You limited your search to:

  Partner: UNT Libraries
 Department: Department of Mechanical and Energy Engineering
 Resource Type: Thesis or Dissertation
 Decade: 2010-2019
Analysis of Sources Affecting Ambient Particulate Matter in Brownsville, Texas

Analysis of Sources Affecting Ambient Particulate Matter in Brownsville, Texas

Date: May 2012
Creator: Diaz Poueriet, Pablo
Description: Texas is the second largest state in U.S.A. based on geographical area, population and the economy. It is home to several large coastal urban areas with major industries and infrastructure supporting the fossil-fuel based energy sector. Most of the major cities on the state have been impacted by significant air pollution events over the past decade. Studies conducted in the southern coastal region of TX have identified long range transport as a major contributor of particulate matter (PM) pollution along with local emissions. Biomass burns, secondary sulfates and diesel emissions sources are comprise as the dominant mass of PM2.5 have been noted to be formed by the long range transport biomass from Central America. Thus, the primary objective of this study was to identify and quantify local as well as regional sources contributing to the PM pollution in the coastal area of Brownsville located along the Gulf of Mexico. Source apportionment techniques such as principal component analysis (PCA) and positive matrix factorization (PMF) were employed on the air quality monitoring data to identify and quantify local and regional sources affecting this coastal region. As a supplement to the PMF and PCA, conditional probability function (CPF) analysis and potential source contribution ...
Contributing Partner: UNT Libraries
Energy Usage While Maintaining Thermal Comfort : A Case Study of a UNT Dormitory

Energy Usage While Maintaining Thermal Comfort : A Case Study of a UNT Dormitory

Date: December 2011
Creator: Gambrell, Dusten
Description: Campus dormitories for the University of North Texas house over 5500 students per year; each one of them requires certain comfortable living conditions while they live there. There is an inherit amount of money required in order to achieve minimal comfort levels; the cost is mostly natural gas for water and room heating and electricity for cooling, lighting and peripherals. The US Department of Energy has developed several programs to aid in performing energy simulations to help those interested design more cost effective building designs. Energy-10 is such a program that allows users to conduct whole house evaluations by reviewing and altering a few parameters such as building materials, solar heating, energy efficient windows etc. The idea of this project was to recreate a campus dormitory and try to emulate existent energy consumption then try to find ways of lowering that usage while maintaining a high level of personal comfort.
Contributing Partner: UNT Libraries
Estimation of Aircraft Emissions for the Corpus Christi International Airport, Corpus Christi, Texas

Estimation of Aircraft Emissions for the Corpus Christi International Airport, Corpus Christi, Texas

Date: May 2013
Creator: Thomas, Gregson Johann
Description: Commercial aviation is a vital part of the United States economy. It generates over $1 trillion annually, which is more than 5% of the U.S. GDP, and produces approximately 10 million jobs. Every year there is an increase in commercial air traffic. This is attributed to expanding trade between states and other countries, which requires larger amounts of cargo aircraft in operation, and also catering to the growing number of middle and upper class passengers who travel for business and pleasure purposes. A rise in commercial aviation leads to the use of more aviation fuel on a monthly and annual basis. This in turn leads to escalated levels of combustion by-products from jet and turbofan engines into the atmosphere. The negative effects of these by-products range from producing poor air quality and consequent health hazards to contributing to global warming. This study is aimed at assessing the impacts of aircraft emissions on the local air quality in Corpus Christi using the Emissions and Dispersion Modeling System. Flight data for the study was obtained from the Department of Transportation's Research and Innovative Technology Administration. Analyses of the emissions were compared on monthly, annual, engine type and airline provider bases. Climatic, economic ...
Contributing Partner: UNT Libraries
Experimental Study on Fluidization of Biomass, Inert Particles, and Biomass/Sand Mixtures

Experimental Study on Fluidization of Biomass, Inert Particles, and Biomass/Sand Mixtures

Date: May 2011
Creator: Paudel, Basu
Description: Fluidization of biomass particles is an important process in the gasification, pyrolysis and combustion in order to extract energy from biomass. Studies on the fluidization of biomass particles (corn cob and walnut shell), inert particles (sand, glass bead, and alumina), which are added to facilitate fluidization of biomass, and biomass/sand mixture were performed. Experiments were carried out in a 14.5 cm internal diameter cold flow fluidization bed to determine minimum fluidization velocities with air as fluidizing medium. On the of basis of experimental data from both present work and those found in the literature, new correlations were developed to predict minimum fluidization velocity for inert particles as well as biomass particles. It was found that the proposed correlations satisfactorily predict minimum fluidization velocities and was in well agreement with experimental data. Furthermore, effect of weight percentage of biomass in the biomass/sand mixtures was studied. The weight fraction of biomass particles in the mixture was chosen in the range of 0 ~ 100 wt. %. The results show that minimum fluidization velocity of the mixtures increases with an increase in biomass content. Using the present experimental data, a new correlation was developed in terms of mass ratio for predicting values of ...
Contributing Partner: UNT Libraries
High-Precision Micropipette Thermal Sensor for Measurement of Thermal Conductivity of Carbon Nanotubes Thin Film

High-Precision Micropipette Thermal Sensor for Measurement of Thermal Conductivity of Carbon Nanotubes Thin Film

Date: August 2011
Creator: Shrestha, Ramesh
Description: The thesis describes novel glass micropipette thermal sensor fabricated in cost-effective manner and thermal conductivity measurement of carbon nanotubes (CNT) thin film using the developed sensor. Various micrometer-sized sensors, which range from 2 µm to 30 µm, were produced and tested. The capability of the sensor in measuring thermal fluctuation at micro level with an estimated resolution of ±0.002oC is demonstrated. The sensitivity of sensors was recorded from 3.34 to 8.86 µV/oC, which is independent of tip size and dependent on the coating of Nickel. The detailed experimental setup for thermal conductivity measurement of CNT film is discussed and 73.418 W/moC was determined as the thermal conductivity of the CNT film at room temperature.
Contributing Partner: UNT Libraries
Investigation of an Investment Casting Method Combined with Additive Manufacturing Methods for Manufacturing Lattice Structures

Investigation of an Investment Casting Method Combined with Additive Manufacturing Methods for Manufacturing Lattice Structures

Date: August 2013
Creator: Kodira, Ganapathy D.
Description: Cellular metals exhibit combinations of mechanical, thermal and acoustic properties that provide opportunities for various implementations and applications; light weight aerospace and automobile structures, impact and noise absorption, heat dissipation, and heat exchange. Engineered cell topologies enable one to control mechanical, thermal, and acoustic properties of the gross cell structures. A possible way to manufacture complex 3D metallic cellular solids for mass production with a relatively low cost, the investment casting (IC) method may be used by combining the rapid prototyping (RP) of wax or injection molding. In spite of its potential to produce mass products of various 3D cellular metals, the method is known to have significant casting porosity as a consequence of the complex cellular topology which makes continuous fluid's access to the solidification interface difficult. The effects of temperature on the viscosity of the fluids were studied. A comparative cost analysis between AM-IC and additive manufacturing methods is carried out. In order to manufacture 3D cellular metals with various topologies for multi-functional applications, the casting porosity should be resolved. In this study, the relations between casting porosity and processing conditions of molten metals while interconnecting with complex cellular geometries are investigated. Temperature, and pressure conditions on the ...
Contributing Partner: UNT Libraries
Laminar Natural Convection From Isothermal Vertical Cylinders

Laminar Natural Convection From Isothermal Vertical Cylinders

Date: August 2012
Creator: Day, Jerod
Description: Laminar natural convection heat transfer from the vertical surface of a cylinder is a classical subject, which has been studied extensively. Furthermore, this subject has generated some recent interest in the literature. In the present investigation, numerical experiments were performed to determine average Nusselt numbers for isothermal vertical cylinders (103 < RaL < 109, 0.5 < L/D <10, and Pr = 0.7) with and without an adiabatic top in a quiescent ambient environment which will allow for plume growth. Results were compared with commonly used correlations and new average Nusselt number correlations are presented. Furthermore, the limit for which the heat transfer results for a vertical flat plate may be used as an approximation for the heat transfer from a vertical cylinder was investigated.
Contributing Partner: UNT Libraries
Quantification of Anthropogenic and Natural Sources of Fine Particles in Houston, Texas Using Positive Matrix Factorization

Quantification of Anthropogenic and Natural Sources of Fine Particles in Houston, Texas Using Positive Matrix Factorization

Date: August 2012
Creator: Peña Sanchez, Carlos Alberto
Description: Texas, due to its geographical area, population, and economy is home to a variety of industrialized areas that have significant air quality problems. These urban areas are affected by elevated levels of fine particulate matter (PM2.5). The primary objective of this study was to identify and quantify local and regional sources of air pollution affecting the city of Houston, Texas. Positive Matrix Factorization (PMF) techniques were applied to observational datasets from two urban air quality monitoring sites in Houston from 2003 through 2008 in order to apportion sources of pollutants affecting the study region. Data from 68 species for Aldine and 91 for Deer Park were collected, evaluated, and revised to create concentration and uncertainty input files for the PMF2 and EPA PMF (PMF3) source apportionment models. A 11-sources solution for Aldine and 10-sources for Deer Park were identified as the optimal solutions with both models. The dominant contributors of fine particulate matter in these sites were found to be biomass burnings (2%-8.9%), secondary sulfates I (21.3%-7.6%) and II (38.8%-22.2%), crustal dust (8.9%-10.9%), industrial activities (10.9%-4.2%), traffic (23.1%-15.6%), secondary nitrates (4.4%-5.5%), fresh (1%-1.6%) and aged(5.1%-4.6%) sea salt and refineries (1.3%-0.6%), representing a strong case to confirm the high influence of ...
Contributing Partner: UNT Libraries
Simulation Study of Tremor Suppression and Experiment of Energy Harvesting with Piezoelectric Materials

Simulation Study of Tremor Suppression and Experiment of Energy Harvesting with Piezoelectric Materials

Date: August 2012
Creator: Ou, Jianqiang
Description: The objective of this research is to develop a wearable device that could harvest waste mechanical energy of the human hand movement and utilize this energy to suppress wrist tremors. Piezoelectric material is used to measure the hand movement signals, and the signal of wrist tremor is filtered to be utilized to suppress the tremor. In order to conduct the experiment of energy harvesting and tremor suppression, an experimental rig was fabricated. Two types of piezoelectric materials, PVDF (polyvinylidene fluoride) films and MFC (macro fiber composite) films, are used to harvest mechanical energy and used as actuators to suppress hand tremors. However, due to some shortages of the materials, these two types of materials are not used as actuators to suppress the wrist tremors. Thus, we use Matlab Simulink to simulate the tremor suppression with AVC (active vibration control) algorithm.
Contributing Partner: UNT Libraries
Thermal Characterization of Austenite Stainless Steel (304) and Cnt Films of Varying Thickness Using Micropipette Thermal Sensors

Thermal Characterization of Austenite Stainless Steel (304) and Cnt Films of Varying Thickness Using Micropipette Thermal Sensors

Date: May 2013
Creator: Dangol, Ashesh
Description: Thermal transport behavior of austenite stainless steel stripe (304) and the carbon nano-tubes (CNTs) films of varying thickness are studied using a micropipette thermal sensor. Micropipette sensors of various tip sizes were fabricated and tested for the sensitivity and reliability. The sensitivity deviated by 0.11 for a batch of pipette coated under same physical vapor deposition (PVD) setting without being affected by a tip size. Annealing, rubber coating and the vertical landing test of the pipette sensor proved to be promising in increasing the reliability and durability of the pipette sensors. A micro stripe (80µm × 6µm × 0.6µm) of stainless steel, fabricated using focused ion beam (FIB) machining, was characterized whose thermal conductivity was determined to be 14.9 W/m-K at room temperature. Similarly, the thermal characterization of CNT films showed the decreasing tendency in the thermal transport behavior with the increase in the film thickness.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 NEXT LAST