You limited your search to:

  Access Rights: Public
  Partner: UNT Libraries
 Department: Department of Computer Science and Engineering
 Decade: 2010-2019
3D Reconstruction Using Lidar and Visual Images

3D Reconstruction Using Lidar and Visual Images

Date: December 2012
Creator: Duraisamy, Prakash
Description: In this research, multi-perspective image registration using LiDAR and visual images was considered. 2D-3D image registration is a difficult task because it requires the extraction of different semantic features from each modality. This problem is solved in three parts. The first step involves detection and extraction of common features from each of the data sets. The second step consists of associating the common features between two different modalities. Traditional methods use lines or orthogonal corners as common features. The third step consists of building the projection matrix. Many existing methods use global positing system (GPS) or inertial navigation system (INS) for an initial estimate of the camera pose. However, the approach discussed herein does not use GPS, INS, or any such devices for initial estimate; hence the model can be used in places like the lunar surface or Mars where GPS or INS are not available. A variation of the method is also described, which does not require strong features from both images but rather uses intensity gradients in the image. This can be useful when one image does not have strong features (such as lines) or there are too many extraneous features.
Contributing Partner: UNT Libraries
Automated Classification of Emotions Using Song Lyrics

Automated Classification of Emotions Using Song Lyrics

Date: December 2012
Creator: Schellenberg, Rajitha
Description: This thesis explores the classification of emotions in song lyrics, using automatic approaches applied to a novel corpus of 100 popular songs. I use crowd sourcing via Amazon Mechanical Turk to collect line-level emotions annotations for this collection of song lyrics. I then build classifiers that rely on textual features to automatically identify the presence of one or more of the following six Ekman emotions: anger, disgust, fear, joy, sadness and surprise. I compare different classification systems and evaluate the performance of the automatic systems against the manual annotations. I also introduce a system that uses data collected from the social network Twitter. I use the Twitter API to collect a large corpus of tweets manually labeled by their authors for one of the six emotions of interest. I then compare the classification of emotions obtained when training on data automatically collected from Twitter versus data obtained through crowd sourced annotations.
Contributing Partner: UNT Libraries
Automatic Tagging of Communication Data

Automatic Tagging of Communication Data

Date: August 2012
Creator: Hoyt, Matthew Ray
Description: Globally distributed software teams are widespread throughout industry. But finding reliable methods that can properly assess a team's activities is a real challenge. Methods such as surveys and manual coding of activities are too time consuming and are often unreliable. Recent advances in information retrieval and linguistics, however, suggest that automated and/or semi-automated text classification algorithms could be an effective way of finding differences in the communication patterns among individuals and groups. Communication among group members is frequent and generates a significant amount of data. Thus having a web-based tool that can automatically analyze the communication patterns among global software teams could lead to a better understanding of group performance. The goal of this thesis, therefore, is to compare automatic and semi-automatic measures of communication and evaluate their effectiveness in classifying different types of group activities that occur within a global software development project. In order to achieve this goal, we developed a web-based component that can be used to help clean and classify communication activities. The component was then used to compare different automated text classification techniques on various group activities to determine their effectiveness in correctly classifying data from a global software development team project.
Contributing Partner: UNT Libraries
Design and Implementation of Large-Scale Wireless Sensor Networks for Environmental Monitoring Applications

Design and Implementation of Large-Scale Wireless Sensor Networks for Environmental Monitoring Applications

Date: May 2010
Creator: Yang, Jue
Description: Environmental monitoring represents a major application domain for wireless sensor networks (WSN). However, despite significant advances in recent years, there are still many challenging issues to be addressed to exploit the full potential of the emerging WSN technology. In this dissertation, we introduce the design and implementation of low-power wireless sensor networks for long-term, autonomous, and near-real-time environmental monitoring applications. We have developed an out-of-box solution consisting of a suite of software, protocols and algorithms to provide reliable data collection with extremely low power consumption. Two wireless sensor networks based on the proposed solution have been deployed in remote field stations to monitor soil moisture along with other environmental parameters. As parts of the ever-growing environmental monitoring cyberinfrastructure, these networks have been integrated into the Texas Environmental Observatory system for long-term operation. Environmental measurement and network performance results are presented to demonstrate the capability, reliability and energy-efficiency of the network.
Contributing Partner: UNT Libraries
The Design Of A Benchmark For Geo-stream Management Systems

The Design Of A Benchmark For Geo-stream Management Systems

Date: December 2011
Creator: Shen, Chao
Description: The recent growth in sensor technology allows easier information gathering in real-time as sensors have grown smaller, more accurate, and less expensive. The resulting data is often in a geo-stream format continuously changing input with a spatial extent. Researchers developing geo-streaming management systems (GSMS) require a benchmark system for evaluation, which is currently lacking. This thesis presents GSMark, a benchmark for evaluating GSMSs. GSMark provides a data generator that creates a combination of synthetic and real geo-streaming data, a workload simulator to present the data to the GSMS as a data stream, and a set of benchmark queries that evaluate typical GSMS functionality and query performance. In particular, GSMark generates both moving points and evolving spatial regions, two fundamental data types for a broad range of geo-stream applications, and the geo-streaming queries on this data.
Contributing Partner: UNT Libraries
Effective and Accelerated Informative Frame Filtering in Colonoscopy Videos Using Graphic Processing Units

Effective and Accelerated Informative Frame Filtering in Colonoscopy Videos Using Graphic Processing Units

Date: August 2010
Creator: Karri, Venkata Praveen
Description: Colonoscopy is an endoscopic technique that allows a physician to inspect the mucosa of the human colon. Previous methods and software solutions to detect informative frames in a colonoscopy video (a process called informative frame filtering or IFF) have been hugely ineffective in (1) covering the proper definition of an informative frame in the broadest sense and (2) striking an optimal balance between accuracy and speed of classification in both real-time and non real-time medical procedures. In my thesis, I propose a more effective method and faster software solutions for IFF which is more effective due to the introduction of a heuristic algorithm (derived from experimental analysis of typical colon features) for classification. It contributed to a 5-10% boost in various performance metrics for IFF. The software modules are faster due to the incorporation of sophisticated parallel-processing oriented coding techniques on modern microprocessors. Two IFF modules were created, one for post-procedure and the other for real-time. Code optimizations through NVIDIA CUDA for GPU processing and/or CPU multi-threading concepts embedded in two significant microprocessor design philosophies (multi-core design and many-core design) resulted a 5-fold acceleration for the post-procedure module and a 40-fold acceleration for the real-time module. Some innovative software modules, ...
Contributing Partner: UNT Libraries
Elicitation of Protein-Protein Interactions from Biomedical Literature Using Association Rule Discovery

Elicitation of Protein-Protein Interactions from Biomedical Literature Using Association Rule Discovery

Date: August 2010
Creator: Samuel, Jarvie John
Description: Extracting information from a stack of data is a tedious task and the scenario is no different in proteomics. Volumes of research papers are published about study of various proteins in several species, their interactions with other proteins and identification of protein(s) as possible biomarker in causing diseases. It is a challenging task for biologists to keep track of these developments manually by reading through the literatures. Several tools have been developed by computer linguists to assist identification, extraction and hypotheses generation of proteins and protein-protein interactions from biomedical publications and protein databases. However, they are confronted with the challenges of term variation, term ambiguity, access only to abstracts and inconsistencies in time-consuming manual curation of protein and protein-protein interaction repositories. This work attempts to attenuate the challenges by extracting protein-protein interactions in humans and elicit possible interactions using associative rule mining on full text, abstracts and captions from figures available from publicly available biomedical literature databases. Two such databases are used in our study: Directory of Open Access Journals (DOAJ) and PubMed Central (PMC). A corpus is built using articles based on search terms. A dataset of more than 38,000 protein-protein interactions from the Human Protein Reference Database (HPRD) ...
Contributing Partner: UNT Libraries
Evaluating Appropriateness of Emg and Flex Sensors for Classifying Hand Gestures

Evaluating Appropriateness of Emg and Flex Sensors for Classifying Hand Gestures

Date: May 2013
Creator: Akumalla, Sarath Chandra
Description: Hand and arm gestures are a great way of communication when you don't want to be heard, quieter and often more reliable than whispering into a radio mike. In recent years hand gesture identification became a major active area of research due its use in various applications. The objective of my work is to develop an integrated sensor system, which will enable tactical squads and SWAT teams to communicate when there is absence of a Line of Sight or in the presence of any obstacles. The gesture set involved in this work is the standardized hand signals for close range engagement operations used by military and SWAT teams. The gesture sets involved in this work are broadly divided into finger movements and arm movements. The core components of the integrated sensor system are: Surface EMG sensors, Flex sensors and accelerometers. Surface EMG is the electrical activity produced by muscle contractions and measured by sensors directly attached to the skin. Bend Sensors use a piezo resistive material to detect the bend. The sensor output is determined by both the angle between the ends of the sensor as well as the flex radius. Accelerometers sense the dynamic acceleration and inclination in 3 ...
Contributing Partner: UNT Libraries
Exploring Memristor Based Analog Design in Simscape

Exploring Memristor Based Analog Design in Simscape

Date: May 2013
Creator: Gautam, Mahesh
Description: With conventional CMOS technologies approaching their scaling limits, researchers are actively investigating alternative technologies for ever increasing computing and mobile demand. A number of different technologies are currently being studied by different research groups. In the last decade, one-dimensional (1D) carbon nanotubes (CNT), graphene, which is a two-dimensional (2D) natural occurring carbon rolled in tubular form, and zero-dimensional (0D) fullerenes have been the subject of intensive research. In 2008, HP Labs announced a ground-breaking fabrication of memristors, the fourth fundamental element postulated by Chua at the University of California, Berkeley in 1971. In the last few years, the memristor has gained a lot of attention from the research community. In-depth studies of the memristor and its analog behavior have convinced the community that it has the potential in future nano-architectures for optimization of high-density memory and neuromorphic computing architectures. The objective of this thesis is to explore memristors for analog and mixed-signal system design using Simscape. This thesis presents a memristor model in the Simscape language. Simscape has been used as it has the potential for modeling large systems. A memristor based programmable oscillator is also presented with simulation results and characterization. In addition, simulation results of different memristor models ...
Contributing Partner: UNT Libraries
Exploring Privacy in Location-based Services Using Cryptographic Protocols

Exploring Privacy in Location-based Services Using Cryptographic Protocols

Date: May 2011
Creator: Vishwanathan, Roopa
Description: Location-based services (LBS) are available on a variety of mobile platforms like cell phones, PDA's, etc. and an increasing number of users subscribe to and use these services. Two of the popular models of information flow in LBS are the client-server model and the peer-to-peer model, in both of which, existing approaches do not always provide privacy for all parties concerned. In this work, I study the feasibility of applying cryptographic protocols to design privacy-preserving solutions for LBS from an experimental and theoretical standpoint. In the client-server model, I construct a two-phase framework for processing nearest neighbor queries using combinations of cryptographic protocols such as oblivious transfer and private information retrieval. In the peer-to-peer model, I present privacy preserving solutions for processing group nearest neighbor queries in the semi-honest and dishonest adversarial models. I apply concepts from secure multi-party computation to realize our constructions and also leverage the capabilities of trusted computing technology, specifically TPM chips. My solution for the dishonest adversarial model is also of independent cryptographic interest. I prove my constructions secure under standard cryptographic assumptions and design experiments for testing the feasibility or practicability of our constructions and benchmark key operations. My experiments show that the proposed ...
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 5 NEXT LAST