You limited your search to:

  Partner: UNT Libraries
 Resource Type: Thesis or Dissertation
 Decade: 2010-2019
 Degree Discipline: Materials Science and Engineering
Atomistic Computer Simulations of Diffusion Mechanisms in Lithium Lanthanum Titanate Solid State Electrolytes for Lithium Ion Batteries

Atomistic Computer Simulations of Diffusion Mechanisms in Lithium Lanthanum Titanate Solid State Electrolytes for Lithium Ion Batteries

Date: August 2014
Creator: Chen, Chao-Hsu
Description: Solid state lithium ion electrolytes are important to the development of next generation safer and high power density lithium ion batteries. Perovskite-structured LLT is a promising solid electrolyte with high lithium ion conductivity. LLT also serves as a good model system to understand lithium ion diffusion behaviors in solids. In this thesis, molecular dynamics and related atomistic computer simulations were used to study the diffusion behavior and diffusion mechanism in bulk crystal and grain boundary in lithium lanthanum titanate (LLT) solid state electrolytes. The effects of defect concentration on the structure and lithium ion diffusion behaviors in LLT were systematically studied and the lithium ion self-diffusion and diffusion energy barrier were investigated by both dynamic simulations and static calculations using the nudged elastic band (NEB) method. The simulation results show that there exist an optimal vacancy concentration at around x=0.067 at which lithium ions have the highest diffusion coefficient and the lowest diffusion energy barrier. The lowest energy barrier from dynamics simulations was found to be around 0.22 eV, which compared favorably with 0.19 eV from static NEB calculations. It was also found that lithium ions diffuse through bottleneck structures made of oxygen ions, which expand in dimension by 8-10% ...
Contributing Partner: UNT Libraries
Atomistic Studies of Point Defect Migration Rates in the Iron-Chromium System

Atomistic Studies of Point Defect Migration Rates in the Iron-Chromium System

Date: August 2010
Creator: Hetherly, Jeffery
Description: Generation and migration of helium and other point defects under irradiation causes ferritic steels based on the Fe-Cr system to age and fail. This is motivation to study point defect migration and the He equation of state using atomistic simulations due to the steels' use in future reactors. A new potential for the Fe-Cr-He system developed by collaborators at the Lawrence Livermore National Laboratory was validated using published experimental data. The results for the He equation of state agree well with experimental data. The activation energies for the migration of He- and Fe-interstitials in varying compositions of Fe-Cr lattices agree well with prior work. This research did not find a strong correlation between lattice ordering and interstitial migration energy
Contributing Partner: UNT Libraries
Biocompatible Hybrid Nanomaterials Involving Polymers and Hydrogels Interfaced with Phosphorescent Complexes and Toxin-Free Metallic Nanoparticles for Biomedical Applications

Biocompatible Hybrid Nanomaterials Involving Polymers and Hydrogels Interfaced with Phosphorescent Complexes and Toxin-Free Metallic Nanoparticles for Biomedical Applications

Date: August 2011
Creator: Marpu, Sreekar B.
Description: The major topics discussed are all relevant to interfacing brightly phosphorescent and non-luminescent coinage metal complexes of [Ag(I) and Au(I)] with biopolymers and thermoresponsive gels for making hybrid nanomaterials with an explanation on syntheses, characterization and their significance in biomedical fields. Experimental results and ongoing work on determining outreaching consequences of these hybrid nanomaterials for various biomedical applications like cancer therapy, bio-imaging and antibacterial abilities are described. In vitro and in vivo studies have been performed on majority of the discussed hybrid nanomaterials and determined that the cytotoxicity or antibacterial activity are comparatively superior when compared to analogues in literature. Consequential differences are noticed in photoluminescence enhancement from hybrid phosphorescent hydrogels, phosphorescent complex ability to physically crosslink, Au(I) sulfides tendency to form NIR (near-infrared) absorbing AuNPs compared to any similar work in literature. Syntheses of these hybrid nanomaterials has been thoroughly investigated and it is determined that either metallic nanoparticles syntheses or syntheses of phosphorescent hydrogels can be carried in single step without involving any hazardous reducing agents or crosslinkers or stabilizers that are commonly employed during multiple step syntheses protocols for syntheses of similar materials in literature. These astounding results that have been discovered within studies of hybrid nanomaterials ...
Contributing Partner: UNT Libraries
Biodegradable Poly(hydroxy Butyrate-co-valerate) Nanocomposites And Blends With Poly(butylene Adipate-co-terephthalate) For Sensor Applications

Biodegradable Poly(hydroxy Butyrate-co-valerate) Nanocomposites And Blends With Poly(butylene Adipate-co-terephthalate) For Sensor Applications

Date: December 2011
Creator: Vidhate, Shailesh.
Description: The utilization of biodegradable polymers is critical for developing “cradle to cradle” mindset with ecological, social and economic consequences. Poly(hydroxy butyrate-co-valerate) (PHBV) shows significant potential for many applications with a polypropylene equivalent mechanical performance. However, it has limitations including high crystallinity, brittleness, small processing window, etc. which need to be overcome before converting them into useful products. Further the development of biodegradable strain sensing polymer sensors for structural health monitoring has been a growing need. In this dissertation I utilize carbon nanotubes as a self sensing dispersed nanofiller. The impact of its addition on PHBV and a blend of PHBV with poly(butylene adipate-co-terephthalate) (PBAT) polymer was examined. Nanocomposites and blends of PHBV, PBAT, and MWCNTs were prepared by melt-blending. The effect of MWCNTs on PHBV crystallinity, crystalline phase, quasi-static and dynamic mechanical property was studied concurrently with piezoresistive response. In PHBV/PBAT blends a rare phenomenon of melting point elevation by the addition of low melting point PBAT was observed. The blends of these two semicrystalline aliphatic and aromatic polyesters were investigated by using differential scanning calorimetry, small angle X-ray scattering, dynamic mechanical analysis, surface energy measurement by contact angle method, polarized optical and scanning electron microscopy, and rheology. The study ...
Contributing Partner: UNT Libraries
Bioresorbable Polymer Blend Scaffold for Tissue Engineering

Bioresorbable Polymer Blend Scaffold for Tissue Engineering

Date: May 2011
Creator: Manandhar, Sandeep
Description: Tissue engineering merges the disciplines of study like cell biology, materials science, engineering and surgery to enable growth of new living tissues on scaffolding constructed from implanted polymeric materials. One of the most important aspects of tissue engineering related to material science is design of the polymer scaffolds. The polymer scaffolds needs to have some specific mechanical strength over certain period of time. In this work bioresorbable aliphatic polymers (PCL and PLLA) were blended using extrusion and solution methods. These blends were then extruded and electrospun into fibers. The fibers were then subjected to FDA standard in vitro immersion degradation tests where its mechanical strength, water absorption, weight loss were observed during the eight weeks. The results indicate that the mechanical strength and rate of degradation can be tailored by changing the ratio of PCL and PLLA in the blend. Processing influences these parameters, with the loss of mechanical strength and rate of degradation being higher in electrospun fibers compared to those extruded. A second effort in this thesis addressed the potential separation of the scaffold from the tissue (loss of apposition) due to the differences in their low strain responses. This hypothesis that using knit with low tension will ...
Contributing Partner: UNT Libraries
Carrier Mobility, Charge Trapping Effects on the Efficiency of Heavily Doped Organic Light-Emitting Diodes, and EU(lll) Based Red OLEDs

Carrier Mobility, Charge Trapping Effects on the Efficiency of Heavily Doped Organic Light-Emitting Diodes, and EU(lll) Based Red OLEDs

Date: August 2010
Creator: Lin, Ming-Te
Description: Transient electroluminescence (EL) was used to measure the onset of emission delay in OLEDs based on transition metal, phosphorescent bis[3,5-bis(2-pyridyl)-1,2,4-triazolato] platinum(ΙΙ) and rare earth, phosphorescent Eu(hfa)3 with 4'-(p-tolyl)-2,2":6',2" terpyridine (ttrpy) doped into 4,4'-bis(carbazol-9-yl) triphenylamine (CBP), from which the carrier mobility was determined. For the Pt(ptp)2 doped CBP films in OLEDs with the structure: ITO/NPB (40nm)/mcp (10nm)/65% Pt(ptp)2:CBP (25nm)/TPBI (30nm)/Mg:Ag (100nm), where NPB=N, N'-bis(1-naphthyl)-N-N'-biphenyl-1, 1'-biphenyl-4, MCP= N, N'-dicarbazolyl-3,5-benzene, TPBI=1,3,5-tris(phenyl-2-benzimidazolyl)-benzene, delayed recombination was observed and based on its dependence on frequency and duty cycle, ascribed to trapping and de-trapping processes at the interface of the emissive layer and electron blocker. The result suggests that the exciton recombination zone is at, or close to the interface between the emissive layer and electron blocker. The lifetime of the thin films of phosphorescent emitter Pt(ptp)2 were studied for comparison with rare earth emitter Eu(hfa)3. The lifetime of 65% Pt(ptp)2:CBP co-film was around 638 nanoseconds at the emission peak of 572nm, and the lifetime of neat Eu(hfa)3 film was obtained around 1 millisecond at 616 nm, which supports the enhanced efficiency obtained from the Pt(ptp)2 devices. The long lifetime and narrow emission of the rare earth dopant Eu(hfa)3 is a fundamental factor limiting device performance. Red ...
Contributing Partner: UNT Libraries
Comparative Coarsening Kinetics of Gamma Prime Precipitates in Nickel and Cobalt Base Superalloys

Comparative Coarsening Kinetics of Gamma Prime Precipitates in Nickel and Cobalt Base Superalloys

Date: August 2014
Creator: Meher, Subhashish
Description: The increasing technological need to push service conditions of structural materials to higher temperatures has motivated the development of several alloy systems. Among them, superalloys are an excellent candidate for high temperature applications because of their ability to form coherent ordered precipitates, which enable the retention of high strength close to their melting temperature. The accelerated kinetics of solute diffusion, with or without an added component of mechanical stress, leads to coarsening of the precipitates, and results in microstructural degradation, limiting the durability of the materials. Hence, the coarsening of precipitates has been a classical research problem for these alloys in service. The prolonged hunt for an alternative of nickel base superalloys with superior traits has gained hope after the recent discovery of Co-Al-W based alloys, which readily form high temperature g precipitates, similar to Ni base superalloys. In the present study, coarsening behavior of g precipitates in Co-10Al-10W (at. %) has been carried out at 800°C and 900°C. This study has, for the first time, obtained critical coarsening parameters in cobalt-base alloys. Apart from this, it has incorporated atomic scale compositional information across the g/g interfaces into classical Cahn-Hilliard model for a better model of coarsening kinetics. The coarsening ...
Contributing Partner: UNT Libraries
Computational Studies on Structures and Ionic Diffusion of Bioactive Glasses

Computational Studies on Structures and Ionic Diffusion of Bioactive Glasses

Date: August 2014
Creator: Xiang, Ye
Description: Bioactive glasses are a class of synthetic inorganic material that have wide orthopedics, dentistry, tissue engineering and other biomedical applications. The origin of the bioactivity is closely related to the atomic structures of these novel glass materials, which otherwise lack long range order and defies any direct experimental measurements due to their amorphous nature. The structure of bioactive glasses is thus essential for the understanding of bioactive behaviors and eventually rational design of glass compositions. In this dissertation, molecular dynamics (MD) and reverse monte carlo (RMC) based computer simulations have been used to systematically study the atomic structure of three classes of new bioactive glasses: strontium doped 45S5 Bioglass®, ZnO-SrO containing bioactive glasses, and Cao-MgO-P2O5-SiO2 bioactive glasses. Properties such as ionic diffusion that are important to glass dissolution behaviors are also examined as a function of glass compositions. The accuracy of structure model generated by simulation was validated by comparing with various experimental measurements including X-ray/neutron diffraction, NMR and Raman spectroscopy. It is shown in this dissertation that atomistic computer simulations, when integrated with structural and property characterizations, is an effective tool in understanding the structural origin of bioactivity and other properties of amorphous bioactive materials that can lead to ...
Contributing Partner: UNT Libraries
Computational Study of Dislocation Based Mechanisms in Fcc Materials

Computational Study of Dislocation Based Mechanisms in Fcc Materials

Date: August 2014
Creator: Yellakara, Ranga Nikhil
Description: Understanding the relationships between microstructures and properties of materials is a key to developing new materials with more suitable qualities or employing the appropriate materials in special uses. In the present world of material research, the main focus is on microstructural control to cost-effectively enhance properties and meet performance specifications. This present work is directed towards improving the fundamental understanding of the microscale deformation mechanisms and mechanical behavior of metallic alloys, particularly focusing on face centered cubic (FCC) structured metals through a unique computational methodology called three-dimensional dislocation dynamics (3D-DD). In these simulations, the equations of motion for dislocations are mathematically solved to determine the evolution and interaction of dislocations. Microstructure details and stress-strain curves are a direct observation in the simulation and can be used to validate experimental results. The effect of initial dislocation microstructure on the yield strength has been studied. It has been shown that dislocation density based crystal plasticity formulations only work when dislocation densities/numbers are sufficiently large so that a statistically accurate description of the microstructure can be obtainable. The evolution of the flow stress for grain sizes ranging from 0.5 to 10 µm under uniaxial tension was simulated using an improvised model by integrating ...
Contributing Partner: UNT Libraries
Corrosion Protection of Aerospace Grade Magnesium Alloy Elektron 43™ for Use in Aircraft Cabin Interiors

Corrosion Protection of Aerospace Grade Magnesium Alloy Elektron 43™ for Use in Aircraft Cabin Interiors

Date: August 2013
Creator: Baillio, Sarah S.
Description: Magnesium alloys exhibit desirable properties for use in transportation technology. In particular, the low density and high specific strength of these alloys is of interest to the aerospace community. However, the concerns of flammability and susceptibility to corrosion have limited the use of magnesium alloys within the aircraft cabin. This work studies a magnesium alloy containing rare earth elements designed to increase resistance to ignition while lowering rate of corrosion. The microstructure of the alloy was documented using scanning electron microscopy. Specimens underwent salt spray testing and the corrosion products were examined using energy dispersive spectroscopy.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 5 NEXT LAST