You limited your search to:

  Partner: UNT Libraries
 Decade: 2000-2009
 Year: 2001
 Degree Discipline: Molecular Biology
 Collection: UNT Theses and Dissertations
Characterization of  Moraxella bovis Aspartate Transcarbamoylase

Characterization of Moraxella bovis Aspartate Transcarbamoylase

Access: Use of this item is restricted to the UNT Community.
Date: December 2001
Creator: Hooshdaran, Sahar
Description: Aspartate transcarbamoylase (ATCase) catalyzes the first committed step in the pyrimidine biosynthetic pathway. Bacterial ATCases have been divided into three classes, class A, B, and C, based on their molecular weight, holoenzyme architecture, and enzyme kinetics. Moraxella bovis is a fastidious organism, the etiologic agent of infectious bovine keratoconjunctivitis (IBK). The M. bovis ATCase was purified and characterized for the first time. It is a class A enzyme with a molecular mass of 480 to 520 kDa. It has a pH optimum of 9.5 and is stable at high temperatures. The ATCase holoenzyme is inhibited by CTP > ATP > UTP. The Km for aspartate is 1.8 mM and the Vmax 1.04 µmol per min, where the Km for carbamoylphosphate is 1.05 mM and the Vmax 1.74 µmol per min.
Contributing Partner: UNT Libraries
Isolation and analysis of cotton genomic clones encompassing a fatty acid desaturase (FAD2) gene

Isolation and analysis of cotton genomic clones encompassing a fatty acid desaturase (FAD2) gene

Date: May 2001
Creator: Kongcharoensuntorn, Wisatre
Description: Polyunsaturated fatty acids are major structural components of plant chloroplast and endoplasmic reticulum membranes. Two fatty acid desaturases (designated FAD2 and FAD3) desaturate 75% of the fatty acids in the endoplasmic reticulum. The w -6 fatty acid desaturase (FAD2) may be responsible for cold acclimation response, since polyunsaturated phospholipids are important in helping maintain plant viability at lowered temperatures. To study regulation of FAD2 gene expression in cotton, a FAD2 gene was isolated from two genomic libraries using an Arabidopsis FAD2 hybridization probe and a cotton FAD2 5¢ -flanking region gene-specific probe, respectively. A cotton FAD2 gene was found to be in two overlapping genomic clones by physical mapping and DNA sequencing. The cloned DNA fragments are identical in size to cotton FAD2 genomic DNA fragments shown by genomic blot hybridization. The cotton FAD2 coding region has 1,155 bp with no introns and would encode a putative polypeptide of 384 amino acids. The cotton FAD2 enzyme has a high identity of 75% with other plant FAD2 enzymes. The enzyme has three histidine-rich motifs that are conserved in all plant membrane desaturases. These histidine boxes may be the iron-binding domains for reduction of oxygen during desaturation. To confirm that this FAD2 ...
Contributing Partner: UNT Libraries
A Novel Mechanism for Site-Directed Mutagenesis of Large Catabolic Plasmids Using Natural Transformation

A Novel Mechanism for Site-Directed Mutagenesis of Large Catabolic Plasmids Using Natural Transformation

Date: August 2001
Creator: Williamson, Phillip C.
Description: Natural transformation is the process by which cells take up DNA from the surrounding medium under physiological conditions, altering the genotype in a heritable fashion. This occurs without chemical or physical treatment of the cells. Certain Acinetobacter strains exhibit a strong tendency to incorporate homologous DNA into their chromosomes by natural transformation. Transformation in Acinetobacter exhibits several unique properties that indicate this system's superiority as a model for transformation studies or studies which benefit from the use of transformation as an experimental method of gene manipulation. Pseudomonas putida is the natural host of TOL plasmids, ranging between 50 kbp and 300 kbp in size and encoding genes for the catabolism of toluene, meta-toluate, and xylene. These very large, single-copy plasmids are difficult to isolate, manipulate, or modify in vitro. In this study, the TOL plasmid pDKR1 was introduced into Acinetobacter calcoaceticus strains and genetically engineered utilizing natural transformation as part of the process. Following engineering by transformation, the recombinant DNA molecule was returned to the native genetic background of the original host P. putida strain. Specific parameters for the successful manipulation of large plasmids by natural transformation in Acinetobacter were identified and are outlined. The effects of growth phase, total ...
Contributing Partner: UNT Libraries
A Possible Role of Ascorbate in Boron Deficient Radish (Raphanus sativa L. cv. Cherry Belle)

A Possible Role of Ascorbate in Boron Deficient Radish (Raphanus sativa L. cv. Cherry Belle)

Date: August 2001
Creator: Sedlacek, Theresa D.
Description: The most apparent symptom of boron deficiency in higher plants is a cessation of growth. Deficiency causes a reduction in ascorbate concentration and the absorption of nutrient ions. Addition of ascorbate temporarily relieves deficiency symptoms. In boron sufficient plants the addition of ascorbate to media causes an increased uptake of nutrients. In an attempt to discover if ascorbate addition to deficient plants causes increased ion uptake, radish plants were grown hydroponically in four different strengths of boron solution. A colorimetric assay for phosphorus was performed both before and after supplementation. Results, however, were inconclusive.
Contributing Partner: UNT Libraries
Purification of Aspartate Transcarbamoylase from  Moraxella (Branhamella) catarrhalis

Purification of Aspartate Transcarbamoylase from Moraxella (Branhamella) catarrhalis

Date: August 2001
Creator: Stawska, Agnieszka A.
Description: The enzyme, aspartate transcarbamoylase (ATCase) from Moraxella (Branhamella) catarrhalis, has been purified. The holoenzyme has a molecular mass of approximately 510kDa, harbors predominantly positive charges and is hydrophobic in nature. The holoenzyme possesses two subunits, a smaller one of 40 kDa and a larger one of 45 kDa. A third polypeptide has been found to contribute to the overall enzymatic activity, having an approximate mass of 55 kDa. The ATCase purification included the generation of cell-free extract, streptomycin sulfate cut, 60 °C heat step, ammonium sulfate cut, dialysis and ion, gel-filtration and hydrophobic interaction chromatography. The enzyme's performance throughout purification steps was analyzed on activity and SDS-PAGE gradient gels. Its enzymatic, specific activities, yield and fold purification, were also determined.
Contributing Partner: UNT Libraries
The regulatory roles of PyrR and Crc in pyrimidine metabolism in  Pseudomonas aeruginosa

The regulatory roles of PyrR and Crc in pyrimidine metabolism in Pseudomonas aeruginosa

Date: August 2001
Creator: Patel, Monal V.
Description: The regulatory gene for pyrimidine biosynthesis has been identified and designated pyrR. The pyrR gene product was purified to homogeneity and found to have a monomeric molecular mass of 19 kDa. The pyrR gene is located directly upstream of the pyrBC' genes in the pyrRBC' operon. Insertional mutagenesis of pyrR led to a 50- 70% decrease in the expression of pyrBC', pyrD, pyrE and pyrF while pyrC was unchanged. This suggests that PyrR is a positive activator. The upstream regions of the pyrD, pyrE and pyrF genes contain a common conserved 9 bp sequence to which the purified PyrR protein is proposed to bind. This consensus sequence is absent in pyrC but is present, as an imperfect inverted repeat separated by 11 bp, within the promoter region of pyrR. Gel retardation assays using upstream DNA fragments proved PyrR binds to the DNA of pyrD, pyrE, pyrF as well as pyrR. This suggests that expression of pyrR is autoregulated; moreover, a stable stem-loop structure was determined in the pyrR promoter region such that the SD sequence and the translation start codon for pyrR is sequestered. β-galactosidase activity from transcriptional pyrR::lacZ fusion assays, showed a two-fold in increase when expressed in a ...
Contributing Partner: UNT Libraries