You limited your search to:

  Partner: UNT Libraries
 Decade: 2000-2009
 Year: 2007
 Degree Discipline: Computer Engineering
 Collection: UNT Theses and Dissertations
Analyzing Microwave Spectra Collected by the Solar Radio Burst Locator

Analyzing Microwave Spectra Collected by the Solar Radio Burst Locator

Date: May 2007
Creator: Kincaid, Cheryl-Annette
Description: Modern communication systems rely heavily upon microwave, radio, and other electromagnetic frequency bands as a means of providing wireless communication links. Although convenient, wireless communication is susceptible to electromagnetic interference. Solar activity causes both direct interference through electromagnetic radiation as well as indirect interference caused by charged particles interacting with Earth's magnetic field. The Solar Radio Burst Locator (SRBL) is a United States Air Force radio telescope designed to detect and locate solar microwave bursts as they occur on the Sun. By analyzing these events, the Air Force hopes to gain a better understanding of the root causes of solar interference and improve interference forecasts. This thesis presents methods of searching and analyzing events found in the previously unstudied SRBL data archive. A new web-based application aids in the searching and visualization of the data. Comparative analysis is performed amongst data collected by SRBL and several other instruments. This thesis also analyzes events across the time, intensity, and frequency domains. These analysis methods can be used to aid in the detection and understanding of solar events so as to provide improved forecasts of solar-induced electromagnetic interference.
Contributing Partner: UNT Libraries
CMOS Active Pixel Sensors for Digital Cameras: Current State-of-the-Art

CMOS Active Pixel Sensors for Digital Cameras: Current State-of-the-Art

Date: May 2007
Creator: Palakodety, Atmaram
Description: Image sensors play a vital role in many image sensing and capture applications. Among the various types of image sensors, complementary metal oxide semiconductor (CMOS) based active pixel sensors (APS), which are characterized by reduced pixel size, give fast readouts and reduced noise. APS are used in many applications such as mobile cameras, digital cameras, Webcams, and many consumer, commercial and scientific applications. With these developments and applications, CMOS APS designs are challenging the old and mature technology of charged couple device (CCD) sensors. With the continuous improvements of APS architecture, pixel designs, along with the development of nanometer CMOS fabrications technologies, APS are optimized for optical sensing. In addition, APS offers very low-power and low-voltage operations and is suitable for monolithic integration, thus allowing manufacturers to integrate more functionality on the array and building low-cost camera-on-a-chip. In this thesis, I explore the current state-of-the-art of CMOS APS by examining various types of APS. I show design and simulation results of one of the most commonly used APS in consumer applications, i.e. photodiode based APS. We also present an approach for technology scaling of the devices in photodiode APS to present CMOS technologies. Finally, I present the most modern CMOS ...
Contributing Partner: UNT Libraries
FPGA Implementations of Elliptic Curve Cryptography and Tate Pairing over Binary Field

FPGA Implementations of Elliptic Curve Cryptography and Tate Pairing over Binary Field

Date: August 2007
Creator: Huang, Jian
Description: Elliptic curve cryptography (ECC) is an alternative to traditional techniques for public key cryptography. It offers smaller key size without sacrificing security level. Tate pairing is a bilinear map used in identity based cryptography schemes. In a typical elliptic curve cryptosystem, elliptic curve point multiplication is the most computationally expensive component. Similarly, Tate pairing is also quite computationally expensive. Therefore, it is more attractive to implement the ECC and Tate pairing using hardware than using software. The bases of both ECC and Tate pairing are Galois field arithmetic units. In this thesis, I propose the FPGA implementations of the elliptic curve point multiplication in GF (2283) as well as Tate pairing computation on supersingular elliptic curve in GF (2283). I have designed and synthesized the elliptic curve point multiplication and Tate pairing module using Xilinx's FPGA, as well as synthesized all the Galois arithmetic units used in the designs. Experimental results demonstrate that the FPGA implementation can speedup the elliptic curve point multiplication by 31.6 times compared to software based implementation. The results also demonstrate that the FPGA implementation can speedup the Tate pairing computation by 152 times compared to software based implementation.
Contributing Partner: UNT Libraries
A nano-CMOS based universal voltage level converter for multi-VDD SoCs.

A nano-CMOS based universal voltage level converter for multi-VDD SoCs.

Date: May 2007
Creator: Vadlmudi, Tripurasuparna
Description: Power dissipation of integrated circuits is the most demanding issue for very large scale integration (VLSI) design engineers, especially for portable and mobile applications. Use of multiple supply voltages systems, which employs level converter between two voltage islands is one of the most effective ways to reduce power consumption. In this thesis work, a unique level converter known as universal level converter (ULC), capable of four distinct level converting operations, is proposed. The schematic and layout of ULC are built and simulated using CADENCE. The ULC is characterized by performing three analysis such as parametric, power, and load analysis which prove that the design has an average power consumption reduction of about 85-97% and capable of producing stable output at low voltages like 0.45V even under varying load conditions.
Contributing Partner: UNT Libraries
Occlusion Tolerant Object Recognition Methods for Video Surveillance and Tracking of Moving Civilian Vehicles

Occlusion Tolerant Object Recognition Methods for Video Surveillance and Tracking of Moving Civilian Vehicles

Date: December 2007
Creator: Pati, Nishikanta
Description: Recently, there is a great interest in moving object tracking in the fields of security and surveillance. Object recognition under partial occlusion is the core of any object tracking system. This thesis presents an automatic and real-time color object-recognition system which is not only robust but also occlusion tolerant. The intended use of the system is to recognize and track external vehicles entered inside a secured area like a school campus or any army base. Statistical morphological skeleton is used to represent the visible shape of the vehicle. Simple curve matching and different feature based matching techniques are used to recognize the segmented vehicle. Features of the vehicle are extracted upon entering the secured area. The vehicle is recognized from either a digital video frame or a static digital image when needed. The recognition engine will help the design of a high performance tracking system meant for remote video surveillance.
Contributing Partner: UNT Libraries