You limited your search to:

  Partner: UNT Libraries
 Decade: 2000-2009
 Degree Discipline: Computer Engineering
 Collection: UNT Theses and Dissertations
Analyzing Microwave Spectra Collected by the Solar Radio Burst Locator
Modern communication systems rely heavily upon microwave, radio, and other electromagnetic frequency bands as a means of providing wireless communication links. Although convenient, wireless communication is susceptible to electromagnetic interference. Solar activity causes both direct interference through electromagnetic radiation as well as indirect interference caused by charged particles interacting with Earth's magnetic field. The Solar Radio Burst Locator (SRBL) is a United States Air Force radio telescope designed to detect and locate solar microwave bursts as they occur on the Sun. By analyzing these events, the Air Force hopes to gain a better understanding of the root causes of solar interference and improve interference forecasts. This thesis presents methods of searching and analyzing events found in the previously unstudied SRBL data archive. A new web-based application aids in the searching and visualization of the data. Comparative analysis is performed amongst data collected by SRBL and several other instruments. This thesis also analyzes events across the time, intensity, and frequency domains. These analysis methods can be used to aid in the detection and understanding of solar events so as to provide improved forecasts of solar-induced electromagnetic interference. digital.library.unt.edu/ark:/67531/metadc3655/
A CAM-based, high-performance classifier-scheduler for a video network processor.
Classification and scheduling are key functionalities of a network processor. Network processors are equipped with application specific integrated circuits (ASIC), so that as IP (Internet Protocol) packets arrive, they can be processed directly without using the central processing unit. A new network processor is proposed called the video network processor (VNP) for real time broadcasting of video streams for IP television (IPTV). This thesis explores the challenge in designing a combined classification and scheduling module for a VNP. I propose and design the classifier-scheduler module which will classify and schedule data for VNP. The proposed module discriminates between IP packets and video packets. The video packets are further processed for digital rights management (DRM). IP packets which carry regular traffic will traverse without any modification. Basic architecture of VNP and architecture of classifier-scheduler module based on content addressable memory (CAM) and random access memory (RAM) has been proposed. The module has been designed and simulated in Xilinx 9.1i; is built in ISE simulator with a throughput of 1.79 Mbps and a maximum working frequency of 111.89 MHz at a power dissipation of 33.6mW. The code has been translated and mapped for Spartan and Virtex family of devices. digital.library.unt.edu/ark:/67531/metadc6045/
CMOS Active Pixel Sensors for Digital Cameras: Current State-of-the-Art
Image sensors play a vital role in many image sensing and capture applications. Among the various types of image sensors, complementary metal oxide semiconductor (CMOS) based active pixel sensors (APS), which are characterized by reduced pixel size, give fast readouts and reduced noise. APS are used in many applications such as mobile cameras, digital cameras, Webcams, and many consumer, commercial and scientific applications. With these developments and applications, CMOS APS designs are challenging the old and mature technology of charged couple device (CCD) sensors. With the continuous improvements of APS architecture, pixel designs, along with the development of nanometer CMOS fabrications technologies, APS are optimized for optical sensing. In addition, APS offers very low-power and low-voltage operations and is suitable for monolithic integration, thus allowing manufacturers to integrate more functionality on the array and building low-cost camera-on-a-chip. In this thesis, I explore the current state-of-the-art of CMOS APS by examining various types of APS. I show design and simulation results of one of the most commonly used APS in consumer applications, i.e. photodiode based APS. We also present an approach for technology scaling of the devices in photodiode APS to present CMOS technologies. Finally, I present the most modern CMOS APS technologies by reviewing different design models. The design of the photodiode APS is implemented using commercial CAD tools. digital.library.unt.edu/ark:/67531/metadc3631/
Comparison and Evaluation of Existing Analog Circuit Simulator using Sigma-Delta Modulator
Access: Use of this item is restricted to the UNT Community.
In the world of VLSI (very large scale integration) technology, there are many different types of circuit simulators that are used to design and predict the circuit behavior before actual fabrication of the circuit. In this thesis, I compared and evaluated existing circuit simulators by considering standard benchmark circuits. The circuit simulators which I evaluated and explored are Ngspice, Tclspice, Winspice (open source) and Spectre® (commercial). I also tested standard benchmarks using these circuit simulators and compared their outputs. The simulators are evaluated using design metrics in order to quantify their performance and identify efficient circuit simulators. In addition, I designed a sigma-delta modulator and its individual components using the analog behavioral language Verilog-A. Initially, I performed simulations of individual components of the sigma-delta modulator and later of the whole system. Finally, CMOS (complementary metal-oxide semiconductor) transistor-level circuits were designed for the differential amplifier, operational amplifier and comparator of the modulator. digital.library.unt.edu/ark:/67531/metadc5422/
Design and Optimization of Components in a 45nm CMOS Phase Locked Loop
Access: Use of this item is restricted to the UNT Community.
A novel scheme of optimizing the individual components of a phase locked loop (PLL) which is used for stable clock generation and synchronization of signals is considered in this work. Verilog-A is used for the high level system design of the main components of the PLL, followed by the individual component wise optimization. The design of experiments (DOE) approach to optimize the analog, 45nm voltage controlled oscillator (VCO) is presented. Also a mixed signal analysis using the analog and digital Verilog behavior of components is studied. Overall a high level system design of a PLL, a systematic optimization of each of its components, and an analog and mixed signal behavioral design approach have been implemented using cadence custom IC design tools. digital.library.unt.edu/ark:/67531/metadc5397/
A Dual Dielectric Approach for Performance Aware Reduction of Gate Leakage in Combinational Circuits
Design of systems in the low-end nanometer domain has introduced new dimensions in power consumption and dissipation in CMOS devices. With continued and aggressive scaling, using low thickness SiO2 for the transistor gates, gate leakage due to gate oxide direct tunneling current has emerged as the major component of leakage in the CMOS circuits. Therefore, providing a solution to the issue of gate oxide leakage has become one of the key concerns in achieving low power and high performance CMOS VLSI circuits. In this thesis, a new approach is proposed involving dual dielectric of dual thicknesses (DKDT) for the reducing both ON and OFF state gate leakage. It is claimed that the simultaneous utilization of SiON and SiO2 each with multiple thicknesses is a better approach for gate leakage reduction than the conventional usage of a single gate dielectric (SiO2), possibly with multiple thicknesses. An algorithm is developed for DKDT assignment that minimizes the overall leakage for a circuit without compromising with the performance. Extensive experiments were carried out on ISCAS'85 benchmarks using 45nm technology which showed that the proposed approach can reduce the leakage, as much as 98% (in an average 89.5%), without degrading the performance. digital.library.unt.edu/ark:/67531/metadc5255/
Energy-Aware Time Synchronization in Wireless Sensor Networks
I present a time synchronization algorithm for wireless sensor networks that aims to conserve sensor battery power. The proposed method creates a hierarchical tree by flooding the sensor network from a designated source point. It then uses a hybrid algorithm derived from the timing-sync protocol for sensor networks (TSPN) and the reference broadcast synchronization method (RBS) to periodically synchronize sensor clocks by minimizing energy consumption. In multi-hop ad-hoc networks, a depleted sensor will drop information from all other sensors that route data through it, decreasing the physical area being monitored by the network. The proposed method uses several techniques and thresholds to maintain network connectivity. A new root sensor is chosen when the current one's battery power decreases to a designated value. I implement this new synchronization technique using Matlab and show that it can provide significant power savings over both TPSN and RBS. digital.library.unt.edu/ark:/67531/metadc5438/
FPGA Implementation of Low Density Party Check Codes Decoder
Reliable communication over the noisy channel has become one of the major concerns in the field of digital wireless communications. The low density parity check codes (LDPC) has gained lot of attention recently because of their excellent error-correcting capacity. It was first proposed by Robert G. Gallager in 1960. LDPC codes belong to the class of linear block codes. Near capacity performance is achievable on a large collection of data transmission and storage.In my thesis I have focused on hardware implementation of (3, 6) - regular LDPC codes. A fully parallel decoder will require too high complexity of hardware realization. Partly parallel decoder has the advantage of effective compromise between decoding throughput and high hardware complexity. The decoding of the codeword follows the belief propagation alias probability propagation algorithm in log domain. A 9216 bit, (3, 6) regular LDPC code with code rate ½ was implemented on FPGA targeting Xilinx Virtex 4 XC4VLX80 device with package FF1148. This decoder achieves a maximum throughput of 82 Mbps. The entire model was designed in VHDL in the Xilinx ISE 9.2 environment. digital.library.unt.edu/ark:/67531/metadc11003/
FPGA Implementations of Elliptic Curve Cryptography and Tate Pairing over Binary Field
Elliptic curve cryptography (ECC) is an alternative to traditional techniques for public key cryptography. It offers smaller key size without sacrificing security level. Tate pairing is a bilinear map used in identity based cryptography schemes. In a typical elliptic curve cryptosystem, elliptic curve point multiplication is the most computationally expensive component. Similarly, Tate pairing is also quite computationally expensive. Therefore, it is more attractive to implement the ECC and Tate pairing using hardware than using software. The bases of both ECC and Tate pairing are Galois field arithmetic units. In this thesis, I propose the FPGA implementations of the elliptic curve point multiplication in GF (2283) as well as Tate pairing computation on supersingular elliptic curve in GF (2283). I have designed and synthesized the elliptic curve point multiplication and Tate pairing module using Xilinx's FPGA, as well as synthesized all the Galois arithmetic units used in the designs. Experimental results demonstrate that the FPGA implementation can speedup the elliptic curve point multiplication by 31.6 times compared to software based implementation. The results also demonstrate that the FPGA implementation can speedup the Tate pairing computation by 152 times compared to software based implementation. digital.library.unt.edu/ark:/67531/metadc3963/
Modeling and reduction of gate leakage during behavioral synthesis of nanoscale CMOS circuits.
Access: Use of this item is restricted to the UNT Community.
The major sources of power dissipation in a nanometer CMOS circuit are capacitive switching, short-circuit current, static leakage and gate oxide tunneling. However, with the aggressive scaling of technology the gate oxide direct tunneling current (gate leakage) is emerging as a prominent component of power dissipation. For sub-65 nm CMOS technology where the gate oxide (SiO2) thickness is very low, the direct tunneling current is the major form of tunneling. There are two contribution parts in this thesis: analytical modeling of behavioral level components for direct tunneling current and propagation delay, and the reduction of tunneling current during behavioral synthesis. Gate oxides of multiple thicknesses are useful in reducing the gate leakage dissipation. Analytical models from first principles to calculate the tunneling current and the propagation delay of behavioral level components is presented, which are backed by BSIM4/5 models and SPICE simulations. These components are characterized for 45 nm technology and an algorithm is provided for scheduling of datapath operations such that the overall tunneling current dissipation of a datapath circuit under design is minimal. It is observed that the oxide thickness that is being considered is very low it may not remain constant during the course of fabrication. Hence the algorithm takes process variation into consideration. Extensive experiments are conducted for various behavioral level benchmarks under various constraints and observed significant reductions, as high as 75.3% (with an average of 64.3%). digital.library.unt.edu/ark:/67531/metadc5590/
A nano-CMOS based universal voltage level converter for multi-VDD SoCs.
Power dissipation of integrated circuits is the most demanding issue for very large scale integration (VLSI) design engineers, especially for portable and mobile applications. Use of multiple supply voltages systems, which employs level converter between two voltage islands is one of the most effective ways to reduce power consumption. In this thesis work, a unique level converter known as universal level converter (ULC), capable of four distinct level converting operations, is proposed. The schematic and layout of ULC are built and simulated using CADENCE. The ULC is characterized by performing three analysis such as parametric, power, and load analysis which prove that the design has an average power consumption reduction of about 85-97% and capable of producing stable output at low voltages like 0.45V even under varying load conditions. digital.library.unt.edu/ark:/67531/metadc3602/
A New N-way Reconfigurable Data Cache Architecture for Embedded Systems
Access: Use of this item is restricted to the UNT Community.
Performance and power consumption are most important issues while designing embedded systems. Several studies have shown that cache memory consumes about 50% of the total power in these systems. Thus, the architecture of the cache governs both performance and power usage of embedded systems. A new N-way reconfigurable data cache is proposed especially for embedded systems. This thesis explores the issues and design considerations involved in designing a reconfigurable cache. The proposed reconfigurable data cache architecture can be configured as direct-mapped, two-way, or four-way set associative using a mode selector. The module has been designed and simulated in Xilinx ISE 9.1i and ModelSim SE 6.3e using the Verilog hardware description language. digital.library.unt.edu/ark:/67531/metadc12079/
Occlusion Tolerant Object Recognition Methods for Video Surveillance and Tracking of Moving Civilian Vehicles
Recently, there is a great interest in moving object tracking in the fields of security and surveillance. Object recognition under partial occlusion is the core of any object tracking system. This thesis presents an automatic and real-time color object-recognition system which is not only robust but also occlusion tolerant. The intended use of the system is to recognize and track external vehicles entered inside a secured area like a school campus or any army base. Statistical morphological skeleton is used to represent the visible shape of the vehicle. Simple curve matching and different feature based matching techniques are used to recognize the segmented vehicle. Features of the vehicle are extracted upon entering the secured area. The vehicle is recognized from either a digital video frame or a static digital image when needed. The recognition engine will help the design of a high performance tracking system meant for remote video surveillance. digital.library.unt.edu/ark:/67531/metadc5133/
OLAP Services
Access: Use of this item is restricted to the UNT Community.
On-line Analytical Processing (OLAP) is a very interesting platform to provide analytical power to the data present in the database. This paper discusses the system designed which handles integration of data from two remote legacy reservation systems to merge as one Integrated database server and also the design of an OLAP database and building an OLAP cube for the data warehousing. OLAP cube is useful for analysis of data and also for making various business decisions. The Data Transformation Services (DTS) in the Microsoft® SQL Server 2000 is used to integrate as a package the collection of data and also for refreshing data in the databases. On-line Analytical Processing (OLAP) cube is designed using Microsoft® Analysis Server. digital.library.unt.edu/ark:/67531/metadc4356/
Region aware DCT domain invisible robust blind watermarking for color images.
The multimedia revolution has made a strong impact on our society. The explosive growth of the Internet, the access to this digital information generates new opportunities and challenges. The ease of editing and duplication in digital domain created the concern of copyright protection for content providers. Various schemes to embed secondary data in the digital media are investigated to preserve copyright and to discourage unauthorized duplication: where digital watermarking is a viable solution. This thesis proposes a novel invisible watermarking scheme: a discrete cosine transform (DCT) domain based watermark embedding and blind extraction algorithm for copyright protection of the color images. Testing of the proposed watermarking scheme's robustness and security via different benchmarks proves its resilience to digital attacks. The detectors response, PSNR and RMSE results show that our algorithm has a better security performance than most of the existing algorithms. digital.library.unt.edu/ark:/67531/metadc9748/
Timing and Congestion Driven Algorithms for FPGA Placement
Placement is one of the most important steps in physical design for VLSI circuits. For field programmable gate arrays (FPGAs), the placement step determines the location of each logic block. I present novel timing and congestion driven placement algorithms for FPGAs with minimal runtime overhead. By predicting the post-routing timing-critical edges and estimating congestion accurately, this algorithm is able to simultaneously reduce the critical path delay and the minimum number of routing tracks. The core of the algorithm consists of a criticality-history record of connection edges and a congestion map. This approach is applied to the 20 largest Microelectronics Center of North Carolina (MCNC) benchmark circuits. Experimental results show that compared with the state-of-the-art FPGA place and route package, the Versatile Place and Route (VPR) suite, this algorithm yields an average of 8.1% reduction (maximum 30.5%) in the critical path delay and 5% reduction in channel width. Meanwhile, the average runtime of the algorithm is only 2.3X as of VPR. digital.library.unt.edu/ark:/67531/metadc5423/
VLSI Architecture and FPGA Prototyping of a Secure Digital Camera for Biometric Application
This thesis presents a secure digital camera (SDC) that inserts biometric data into images found in forms of identification such as the newly proposed electronic passport. However, putting biometric data in passports makes the data vulnerable for theft, causing privacy related issues. An effective solution to combating unauthorized access such as skimming (obtaining data from the passport's owner who did not willingly submit the data) or eavesdropping (intercepting information as it moves from the chip to the reader) could be judicious use of watermarking and encryption at the source end of the biometric process in hardware like digital camera or scanners etc. To address such issues, a novel approach and its architecture in the framework of a digital camera, conceptualized as an SDC is presented. The SDC inserts biometric data into passport image with the aid of watermarking and encryption processes. The VLSI (very large scale integration) architecture of the functional units of the SDC such as watermarking and encryption unit is presented. The result of the hardware implementation of Rijndael advanced encryption standard (AES) and a discrete cosine transform (DCT) based visible and invisible watermarking algorithm is presented. The prototype chip can carry out simultaneous encryption and watermarking, which to our knowledge is the first of its kind. The encryption unit has a throughput of 500 Mbit/s and the visible and invisible watermarking unit has a max frequency of 96.31 MHz and 256 MHz respectively. digital.library.unt.edu/ark:/67531/metadc5393/