Search Results

Cassette Systems for Creating Intergeneric Hybrid ATCases
Cassette systems for creating intergeneric hybrid ATCases were constructed. An MluI restriction enzyme site was introduced at the carbamoylphosphate binding site within the pyrB genes of both Pseudomonas putida and Escherichia coli. Two hybrids, E. coli pyrB polar domain fused with P. putida pyrB equatorial domain and P. putida pyrB polar domain fused with E. coli pyrB equatorial domain, are possible. The intergeneric E. coli-P. putida hybrid pyrB gene was constructed and found to encode an active ATCase which complemented an E. coli Pyr- strain. These hybrids are useful for kinetic and expression studies of ATCase in E. coli.
Cell-Free Recovery and Isotopic Identification of Cyanide Degrading Enzymes from Pseudomonas Fluorescens
Cell-free extracts from Pseudomonas fluorescens NCIMB 11764 catalyzed the degradation of cyanide into products that included C02, formic acid, formamide and ammonia. Cyanide-degrading activity was localized to cytosolic cell fractions and was observed at substrate concentrations as high as 100 mM. Two cyanide degrading activities were identified by: (i) the determination of reaction products stoichiometries, (ii) requirements for NADH and oxygen, and (iii) kinetic analysis. The first activity produced CO2 and NH3 as reaction products, was dependent on oxygen and NADH for activity, and displayed an apparent Km for cyanide of 1.2 mM. The second activity generated formic acid (and NH3) pfus formamide as reaction products, was oxygen independent, and had an apparent Km of 12 mM for cyanide. The first enzymatic activity was identified as cyanide oxygenase whereas the second activity consists of two enzymes, a cyanide nitrilase (dihydratase) and putative cyanide hydratase. In addition to these enzymes, cyanide-grown cells were also induced for formate dehydrogenase (FDH), providing a means of recycling NADH utilized by cyanide oxygenase.
Cloning of Carbonic Anhydrase from Cotton (Gossypium hirsutum L.)
Carbonic anhydrase is a ubiquitous zinc-metalloenzyme that catalyzes the interconversion of carbon dioxide and carbonate and has been found to play a wide range of roles in animals, plants and bacteria. Cotton genomic and cDNA libraries were screened for the plastidial isoform of carbonic anhydrase. The nucleotide sequences of two 1.2 Kb partial cDNA clones were determined. These clones exhibit high homology to carbonic anhydrases from other dicot plants and possess all the expected peptide motifs. For example, serine and threonine rich chloroplastic targeting peptide and conserved zinc binding residues are both present. These clones were utilized to isolate two carbonic anhydrase genes that were shown to encode different isoforms by PCR and RFLP analysis.
Comparative Mitochondrial DNA Sequence Diversity in Isolated and Open Populations of Southern Flying Squirrels
Three populations of Southern flying squirrels were studied in the Ouachita Mountains of Arkansas to assess the impact of population subdivision-due to island formation--on the population genetics of Glaucomys volans. One island, one mainland, and one open population were investigated. A 367 nucleotide hypervariable region of mitochondrial DNA was sequenced in individuals from each population. Individuals and populations were compared to assess relatedness. Higher sequence diversity was detected in the open and island populations. One island individual shared characters with both the island and mainland populations. Results support the hypothesis that the mainland population may have reduced gene flow. Also, the island population may have been originally founded by at least two maternal lineages.
Construction of a Cloning Vector Based upon a Rhizobium Plasmid Origin of Replication and its Application to Genetic Engineering of Rhizobium Strains
Rhizobia are Gram-negative, rod-shaped, soil bacteria with the ability to fix atmospheric nitrogen into ammonia as symbiont bacteroids within nodules of leguminous plant roots. Here, resident Rhizobium plasmids were studied as possible sources of components for the construction of a cloning vector for Rhizobium species.
DNA Typing of HLA-B by PCR with Primer Mixes Utilizing Sequence-Specific Primers
The aim of this study was to design a resolution typing system for the HLA-B gene. This technique involves a one-step PCR reaction utilizing genomic DNA and sequence-specific primers to determine the specificity of each allele and to produce a larger primer data base ideal for serological analysis. The application of this technique to serological analysis can improve serology detection which is currently hindered by antibody cross-reactivity and the unavailability of useful typing reagents.
In Situ Hybridization of 70 kD Heat Shock Protein mRNA in a Rat Model of Ethanol Self-Administration
Sucrose fading was used to initiate self-administration of ethanol on an FR4 schedule in male Fischer 344 rats. Rats showed low response rates for ethanol alone. After administration of liquid diet containing ethanol, ethanol intake increased over levels prior to administration of the liquid diet. In situ hybridization compared mRNA for the inducible or constitutive 70 kD heat shock proteins in ethanol and nonethanol rats. Both inducible and constitutive mRNAs were found in nonethanol and ethanol tissues. In peripheral organs, radiolableling was higher in ethanol tissue. In brain regions, nonethanol tissues showed higher radiolabeling.
Isolation and Characterization of the Operon Containing Aspartate Transcarbamoylase and Dihydroorotase from Pseudomonas aeruginosa
The Pseudomonas aeruginosa ATCase was cloned and sequenced to determine the correct size, subunit composition and architecture of this pivotal enzyme in pyrimidine biosynthesis. During the course of this work, it was determined that the ATCase of Pseudomonas was not 360,000 Da but rather present in a complex of 484,000 Da consisting of two different polypeptides (36,000 Da and 44,000 Da) with an architecture similar to that of E. coli ATCase, 2(C3):3(r2). However, there was no regulatory polypeptide found in the Pseudomonas ATCase.
Mutagenized HLA DNA Constructs: Tools for Validating Molecular HLA Typing Methodologies
This study describes the development and validation of mutagenized cloned DNA constructs, which correspond to the polymorphic regions of the class II region of the HLA complex. The constructs were used to verify the allelic specificity of primers and probes in polymerase chain reaction (PCR)-based HLA typing assays such as Sequence Specific Primers (SSP) and Sequence Specific Oligonucleotide Probes (SSOP). The constructs consisted of the entire polymorphic region of exon 2 of class II HLA allele sequences that included primer annealing sites or probe hybridization sites. An HLA allele sequence was inserted into a plasmid, cloned, then mutagenized to match a specific HLA allele, and finally, the correct clone was verified by bidirectional sequencing of the insert. Thus, the construct created a cloned reference DNA sample for any specific allele, and can be used to validate the accuracy of various molecular methodologies.
Nucleotide Sequence Determination, Subcloning, Expression and Characterization of the xy1LT Region of the Pseudomonas putida TOL Plasmid pDK1
The complete nucleotide sequence of the region encoding the DHCDH function of the pDK1 lower operon was determined. DNA analysis has shown the presence of two open reading frames, one gene consisting of 777 nucleotides encoding a polypeptide of 27.85 kDa and another gene of 303 nucleotides encoding a polypeptide of 11.13 kDa. The results of enzymatic expression studies suggest that DHCDH activity is associated only with xy1L. However although the addition of xy1T cell-free extracts to xy1L cell-free extracts does not produce an increase in DHCDH activity, subclones carrying both xy1L and xy1T exhibit 300- 400% more DHCDH activity than subclones carrying only xy1L.
Regulation, Evolution, and Properties of the ato Qperon and its Gene Products in Escherichia coli
The regulation of short chain fatty acid metabolism has been examined. Metabolism of acetoacetate, and short chain fatty acids such as butyrate and valerate, is predicated upon the expression of genes of the ato operon. Acetoacetate induces expression of a CoA transferase (encoded by the atoDA genes) and expression of a thiolase (encoded by the atoB gene). Metabolism of saturated short chain fatty acids requires the activities of the transferase and thiolase and enzymes of 6-oxidation as well. Spontaneous mutant strains were isolated that were either constitutive or that were inducible by valerate or butyrate instead of acetoacetate.
Regulation of Colony-Stimulating Factor-1 Biosynthesis
Recent studies suggest that synthesis of the Colony-stimulating factor (CSF) is a well regulated process. However, the molecular mechanisms of the signal transduction of the various inducers of CSF such as monokines and lymphokines are not well understood. Using Interleukin 1 (IL-1) stimulation of CSF-1 in the MIA PaCa-2 cell line as a model system, the involvement of G-protein has been studied. The IL-1 induction of CSF-1 synthesis can be inhibited by both Pertussis toxin and Cholera toxin, which are known to modify the Gᵢ and Gₛ proteins respectively, thus activating adenylate cyclase to release more cAMP. The toxin inactivation can be prevented by inhibitors of the ADP-ribosylation such as, benzamide and MBAMG. Addition of dibutyryl-cAMP inhibits the IL-1 induced CSF production. Both Theophylline and Forskolin which increase cAMP by inhibiting phosphodiesterase and stimulating adenylate cyclase respectively, also inhibit CSF-1 production. Results from these studies have shown that cAMP level inversely regulates the biosynthesis of CSF-1. Preincubation of MIA PaCa-2 cells with IL-1 and 5'- guanylylimidodiphosphate (GppNHp) prevents the inhibitory effect of pertussis toxin on CSF-1 production. These data are consistent with the hypothesis that IL-1 binds to its receptor and couples to Gᵢ∝ resulting in the inhibition of adenylate cyclase and reducing cAMP level. Lowering of the' cAMP level leads to the activation of CSF-1 gene expression. The activity of another inducer of CSF-1 production in this system, 12-0-tetradecanoylphorbol-13-acetate (TPA), can be abolished by 1- (5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), which is a specific inhibitor of protein kinase C. However, H-7 failed to inhibit IL-1 stimulated CSF-1 production. Other known activators of protein kinase C namely, Ca²⁺ and L-α-l-oleoyl-2-acetoyl-sn- 3-glycerol (OAG), also increase CSF production. On the other hand, Indomethacin which is known to inhibit prostaglandin E (PGE), stimulates CSF-1 production in MIA PaCa-2 cells. These data suggest that different mechanisms …
Structural Analysis of the TOL pDK1 xylGFJQK Region and Partial Characterization of the xylF and xylG Gene Products
TOL plasmids encode enzymes responsible for utilization of toluene and related aromatic compounds by Pseudomonas putida, ultimately converting them to central metabolic intermediates. The nucleotide sequence for the 5.6 kb xylGFJQK region of the pDK1 TOL meta operon was determined. DNA sequence analysis revealed the presence of five open reading frames corresponding to xylG (1458 bp), xylF (846 bp), xylJ (783 bp), xylQ (936 bp) and xylK (1047 bp), encoding predicted protein products of 51.6, 31.3, 27.8, 32.8, and 36.6 kDa in size, respectively. The average G+C content of the xylLTEGFJQK region was 65.7%, somewhat higher than the 58.9% seen in the immediately upstream xylXYZ region and substantially more than the 50% G+C content reported for the upper TOL operon of this plasmid. Homology comparisons were made with genes and proteins of related catabolic plasmids. The dmpCDEFG and pWWO xylGFJQK regions exhibit consistently high levels of nucleotide and amino acid homology to pDK1 xylGFJQK throughout the entire region. In contrast, although the nucleotide sequence homology of the Acinetobacter atdCDE region to xylGFJ is high, the homology of atdFG to xylQK is markedly less. Such radical changes in homology between corresponding regions of different operons, combined with variable base and codon usage patterns within and between operons, provides additional support for the idea that the upper and lower operons encoding enzymes of aromatic pathways have evolved independently of one another and that these operons have continued to exchange genetic material with homologous expression units through a series of recombination events. Recombinant plasmids were constructed for individual expression of each of the xylGFJQK genes. HMSD (XylG) and HMSH (XylF) were partially purified and characterized with respect to substrate specificity and kinetic mechanism. Evidence was obtained suggesting that the HMSD reaction occurs via a steady state ordered mechanism or a random mechanism where …
Subcloning and Nucleotide Sequence of the xylO/PUWCMA Region from the Pseudomonas putida TOL Plasmid pDK1
The TOL plasmids of Pseudomonas putida encode enzymes required for the oxidation of toluene and other related aromatic compounds. These genes are organized into two operons, the xylUWCMABN operon (upper), and the xylXYZLTEGFJQKIH operon (lower). Here we report the nucleotide sequence of a 7107 bp segment of the TOL pDK1 plasmid encoding the region just upstream of the "upper" operon through the genes encoding xylUWCMA. Sequence analysis, comparison of base-usage patterns, codon-usage patterns, and intergenic distances between genes help support the idea that the "upper" and "lower" operons have evolved independently in different genetic backgrounds and have only more recently been brought together in TOL and related catabolic plasmids.
Subcloning and Nucleotide Sequence of Two Positive Acting Regulatory Genes, xy1R and xy1S, from the Pseudomonas putida HS1 TOL Plasmid PDK1
TOL plasmids of Pseudomonas putida encode enzymes for the degradation of toluene and related aromatics. These genes are organized into two operons regulated by the Xy1R and Xy1S transcriptional activators. Previous analysis of the TOL pDK1 catechol-2,3-dioxygenase gene (xy1E) and a comparison of this gene to xy1E from the related TOL plasmid pWW0, revealed the existance of a substantial level of sequence homology (82%).
Back to Top of Screen