You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Computer Science and Engineering
 Degree Level: Doctoral
 Collection: UNT Theses and Dissertations
Layout-accurate Ultra-fast System-level Design Exploration Through Verilog-ams

Layout-accurate Ultra-fast System-level Design Exploration Through Verilog-ams

Date: May 2013
Creator: Zheng, Geng
Description: This research addresses problems in designing analog and mixed-signal (AMS) systems by bridging the gap between system-level and circuit-level simulation by making simulations fast like system-level and accurate like circuit-level. The tools proposed include metamodel integrated Verilog-AMS based design exploration flows. The research involves design centering, metamodel generation flows for creating efficient behavioral models, and Verilog-AMS integration techniques for model realization. The core of the proposed solution is transistor-level and layout-level metamodeling and their incorporation in Verilog-AMS. Metamodeling is used to construct efficient and layout-accurate surrogate models for AMS system building blocks. Verilog-AMS, an AMS hardware description language, is employed to build surrogate model implementations that can be simulated with industrial standard simulators. The case-study circuits and systems include an operational amplifier (OP-AMP), a voltage-controlled oscillator (VCO), a charge-pump phase-locked loop (PLL), and a continuous-time delta-sigma modulator (DSM). The minimum and maximum error rates of the proposed OP-AMP model are 0.11 % and 2.86 %, respectively. The error rates for the PLL lock time and power estimation are 0.7 % and 3.0 %, respectively. The OP-AMP optimization using the proposed approach is ~17000× faster than the transistor-level model based approach. The optimization achieves a ~4× power reduction for the OP-AMP ...
Contributing Partner: UNT Libraries
Metamodeling-based Fast Optimization of  Nanoscale Ams-socs

Metamodeling-based Fast Optimization of Nanoscale Ams-socs

Date: May 2012
Creator: Garitselov, Oleg
Description: Modern consumer electronic systems are mostly based on analog and digital circuits and are designed as analog/mixed-signal systems on chip (AMS-SoCs). the integration of analog and digital circuits on the same die makes the system cost effective. in AMS-SoCs, analog and mixed-signal portions have not traditionally received much attention due to their complexity. As the fabrication technology advances, the simulation times for AMS-SoC circuits become more complex and take significant amounts of time. the time allocated for the circuit design and optimization creates a need to reduce the simulation time. the time constraints placed on designers are imposed by the ever-shortening time to market and non-recurrent cost of the chip. This dissertation proposes the use of a novel method, called metamodeling, and intelligent optimization algorithms to reduce the design time. Metamodel-based ultra-fast design flows are proposed and investigated. Metamodel creation is a one time process and relies on fast sampling through accurate parasitic-aware simulations. One of the targets of this dissertation is to minimize the sample size while retaining the accuracy of the model. in order to achieve this goal, different statistical sampling techniques are explored and applied to various AMS-SoC circuits. Also, different metamodel functions are explored for their ...
Contributing Partner: UNT Libraries
Modeling Synergistic Relationships Between Words and Images

Modeling Synergistic Relationships Between Words and Images

Date: December 2012
Creator: Leong, Chee Wee
Description: Texts and images provide alternative, yet orthogonal views of the same underlying cognitive concept. By uncovering synergistic, semantic relationships that exist between words and images, I am working to develop novel techniques that can help improve tasks in natural language processing, as well as effective models for text-to-image synthesis, image retrieval, and automatic image annotation. Specifically, in my dissertation, I will explore the interoperability of features between language and vision tasks. In the first part, I will show how it is possible to apply features generated using evidence gathered from text corpora to solve the image annotation problem in computer vision, without the use of any visual information. In the second part, I will address research in the reverse direction, and show how visual cues can be used to improve tasks in natural language processing. Importantly, I propose a novel metric to estimate the similarity of words by comparing the visual similarity of concepts invoked by these words, and show that it can be used further to advance the state-of-the-art methods that employ corpus-based and knowledge-based semantic similarity measures. Finally, I attempt to construct a joint semantic space connecting words with images, and synthesize an evaluation framework to quantify cross-modal ...
Contributing Partner: UNT Libraries
Physical-Layer Network Coding for MIMO Systems

Physical-Layer Network Coding for MIMO Systems

Date: May 2011
Creator: Xu, Ning
Description: The future wireless communication systems are required to meet the growing demands of reliability, bandwidth capacity, and mobility. However, as corruptions such as fading effects, thermal noise, are present in the channel, the occurrence of errors is unavoidable. Motivated by this, the work in this dissertation attempts to improve the system performance by way of exploiting schemes which statistically reduce the error rate, and in turn boost the system throughput. The network can be studied using a simplified model, the two-way relay channel, where two parties exchange messages via the assistance of a relay in between. In such scenarios, this dissertation performs theoretical analysis of the system, and derives closed-form and upper bound expressions of the error probability. These theoretical measurements are potentially helpful references for the practical system design. Additionally, several novel transmission methods including block relaying, permutation modulations for the physical-layer network coding, are proposed and discussed. Numerical simulation results are presented to support the validity of the conclusions.
Contributing Partner: UNT Libraries
Process-Voltage-Temperature Aware Nanoscale Circuit Optimization

Process-Voltage-Temperature Aware Nanoscale Circuit Optimization

Date: December 2010
Creator: Thakral, Garima
Description: Embedded systems which are targeted towards portable applications are required to have low power consumption because such portable devices are typically powered by batteries. During the memory accesses of such battery operated portable systems, including laptops, cell phones and other devices, a significant amount of power or energy is consumed which significantly affects the battery life. Therefore, efficient and leakage power saving cache designs are needed for longer operation of battery powered applications. Design engineers have limited control over many design parameters of the circuit and hence face many chal-lenges due to inherent process technology variations, particularly on static random access memory (SRAM) circuit design. As CMOS process technologies scale down deeper into the nanometer regime, the push for high performance and reliable systems becomes even more challenging. As a result, developing low-power designs while maintaining better performance of the circuit becomes a very difficult task. Furthermore, a major need for accurate analysis and optimization of various forms of total power dissipation and performance in nanoscale CMOS technologies, particularly in SRAMs, is another critical issue to be considered. This dissertation proposes power-leakage and static noise margin (SNM) analysis and methodologies to achieve optimized static random access memories (SRAMs). Alternate topologies ...
Contributing Partner: UNT Libraries
Scene Analysis Using Scale Invariant Feature Extraction and Probabilistic Modeling

Scene Analysis Using Scale Invariant Feature Extraction and Probabilistic Modeling

Access: Use of this item is restricted to the UNT Community.
Date: August 2011
Creator: Shen, Yao
Description: Conventional pattern recognition systems have two components: feature analysis and pattern classification. For any object in an image, features could be considered as the major characteristic of the object either for object recognition or object tracking purpose. Features extracted from a training image, can be used to identify the object when attempting to locate the object in a test image containing many other objects. To perform reliable scene analysis, it is important that the features extracted from the training image are detectable even under changes in image scale, noise and illumination. Scale invariant feature has wide applications such as image classification, object recognition and object tracking in the image processing area. In this thesis, color feature and SIFT (scale invariant feature transform) are considered to be scale invariant feature. The classification, recognition and tracking result were evaluated with novel evaluation criterion and compared with some existing methods. I also studied different types of scale invariant feature for the purpose of solving scene analysis problems. I propose probabilistic models as the foundation of analysis scene scenario of images. In order to differential the content of image, I develop novel algorithms for the adaptive combination for multiple features extracted from images. I ...
Contributing Partner: UNT Libraries
Sentence Similarity Analysis with Applications in Automatic Short Answer Grading

Sentence Similarity Analysis with Applications in Automatic Short Answer Grading

Date: August 2012
Creator: Mohler, Michael A.G.
Description: In this dissertation, I explore unsupervised techniques for the task of automatic short answer grading. I compare a number of knowledge-based and corpus-based measures of text similarity, evaluate the effect of domain and size on the corpus-based measures, and also introduce a novel technique to improve the performance of the system by integrating automatic feedback from the student answers. I continue to combine graph alignment features with lexical semantic similarity measures and employ machine learning techniques to show that grade assignment error can be reduced compared to a system that considers only lexical semantic measures of similarity. I also detail a preliminary attempt to align the dependency graphs of student and instructor answers in order to utilize a structural component that is necessary to simulate human-level grading of student answers. I further explore the utility of these techniques to several related tasks in natural language processing including the detection of text similarity, paraphrase, and textual entailment.
Contributing Partner: UNT Libraries
Social Network Simulation and Mining Social Media to Advance Epidemiology

Social Network Simulation and Mining Social Media to Advance Epidemiology

Date: August 2009
Creator: Corley, Courtney David
Description: Traditional Public Health decision-support can benefit from the Web and social media revolution. This dissertation presents approaches to mining social media benefiting public health epidemiology. Through discovery and analysis of trends in Influenza related blogs, a correlation to Centers for Disease Control and Prevention (CDC) influenza-like-illness patient reporting at sentinel health-care providers is verified. A second approach considers personal beliefs of vaccination in social media. A vaccine for human papillomavirus (HPV) was approved by the Food and Drug Administration in May 2006. The virus is present in nearly all cervical cancers and implicated in many throat and oral cancers. Results from automatic sentiment classification of HPV vaccination beliefs are presented which will enable more accurate prediction of the vaccine's population-level impact. Two epidemic models are introduced that embody the intimate social networks related to HPV transmission. Ultimately, aggregating these methodologies with epidemic and social network modeling facilitate effective development of strategies for targeted interventions.
Contributing Partner: UNT Libraries
Source and Channel Coding Strategies for Wireless Sensor Networks

Source and Channel Coding Strategies for Wireless Sensor Networks

Date: December 2012
Creator: Li, Li
Description: In this dissertation, I focus on source coding techniques as well as channel coding techniques. I addressed the challenges in WSN by developing (1) a new source coding strategy for erasure channels that has better distortion performance compared to MDC; (2) a new cooperative channel coding strategy for multiple access channels that has better channel outage performances compared to MIMO; (3) a new source-channel cooperation strategy to accomplish source-to-fusion center communication that reduces system distortion and improves outage performance. First, I draw a parallel between the 2x2 MDC scheme and the Alamouti's space time block coding (STBC) scheme and observe the commonality in their mathematical models. This commonality allows us to observe the duality between the two diversity techniques. Making use of this duality, I develop an MDC scheme with pairwise complex correlating transform. Theoretically, I show that MDC scheme results in: 1) complete elimination of the estimation error when only one descriptor is received; 2) greater efficiency in recovering the stronger descriptor (with larger variance) from the weaker descriptor; and 3) improved performance in terms of minimized distortion as the quantization error gets reduced. Experiments are also performed on real images to demonstrate these benefits. Second, I present a ...
Contributing Partner: UNT Libraries
Statistical Strategies for Efficient Signal Detection and Parameter Estimation in Wireless Sensor Networks

Statistical Strategies for Efficient Signal Detection and Parameter Estimation in Wireless Sensor Networks

Date: December 2013
Creator: Ayeh, Eric
Description: This dissertation investigates data reduction strategies from a signal processing perspective in centralized detection and estimation applications. First, it considers a deterministic source observed by a network of sensors and develops an analytical strategy for ranking sensor transmissions based on the magnitude of their test statistics. The benefit of the proposed strategy is that the decision to transmit or not to transmit observations to the fusion center can be made at the sensor level resulting in significant savings in transmission costs. A sensor network based on target tracking application is simulated to demonstrate the benefits of the proposed strategy over the unconstrained energy approach. Second, it considers the detection of random signals in noisy measurements and evaluates the performance of eigenvalue-based signal detectors. Due to their computational simplicity, robustness and performance, these detectors have recently received a lot of attention. When the observed random signal is correlated, several researchers claim that the performance of eigenvalue-based detectors exceeds that of the classical energy detector. However, such claims fail to consider the fact that when the signal is correlated, the optimal detector is the estimator-correlator and not the energy detector. In this dissertation, through theoretical analyses and Monte Carlo simulations, eigenvalue-based detectors ...
Contributing Partner: UNT Libraries