Search Results

The Abraham Solvation Model Used for Prediction of Solvent-Solute Interactions and New Methods for Updating Parameters
The Abraham solvation model (ABSM) is an experimentally derived predictive model used to help predict various solute properties. This work covers various uses for the ABSM including predicting molar enthalpies of vaporization, predicting solvent coefficients for two new solvents (2,2,5,5-tetramethyloxolane and diethyl carbonate), predicting values for multiple new ionic liquids (ILs). This work also introduces a novel method for updating IL ABSM parameters by updating cation- and anion-specific values using linear algebra and binary matrices.
Acceptor-sensitizers for Nanostructured Oxide Semiconductor in Excitonic Solar Cells
Organic dyes are examined in photoelectrochemical systems wherein they engage in thermal (rather than photoexcited) electron donation into metal oxide semiconductors. These studies are intended to elucidate fundamental parameters of electron transfer in photoelectrochemical cells. Development of novel methods for the structure/property tuning of electroactive dyes and the preparation of nanostructured semiconductors have also been discovered in the course of the presented work. Acceptor sensitized polymer oxide solar cell devices were assembled and the impact of the acceptor dyes were studied. The optoelectronic tuning of boron-chelated azadipyrromethene dyes has been explored by the substitution of carbon substituents in place of fluoride atoms at boron. Stability of singlet exited state and level of reduction potential of these series of aza-BODIPY coumpounds were studied in order to employ them as electron-accepting sensitizers in solid state dye sensitized solar cells.
Accuracy and Efficiency in Computational Chemistry: The Correlation Consistent Composite Approach
One of the central concerns of computational chemistry is that of efficiency (i.e. the development of methodologies which will yield increased accuracy of prediction without requiring additional computational resources – RAM, disk space, computing time). Though the equations of quantum mechanics are known, the solutions to these equations often require a great deal of computing power. This dissertation primarily concerns the theme of improved computational efficiency (i.e. the achievement of greater accuracy with reduced computational cost). Improvements in the efficiency of computational chemistry are explored first in terms of the correlation consistent composite approach (ccCA). The ccCA methodology was modified and this enhanced ccCA methodology was tested against the diverse G3/05 set of 454 energetic properties. As computational efficiency improves, molecules of increasing size may be studied and this dissertation explored the issues (differential correlation and size extensivity effects) associated with obtaining chemically accurate (within 1 kcal mol-1) enthalpies of formation for hydrocarbon molecules of escalating size. Two applied projects are also described; these projects concerned the theoretical prediction of a novel rare gas compound, FKrOH, and the mechanism of human glutathione synthetase’s (hGS) negative cooperativity. The final work examined the prospect for the parameterization of the modified embedded atom method (MEAM) potential using first principles calculations of dimer and trimer energies of nickel and carbon systems. This method of parameterization holds promise for increasing the accuracy of simulations for bulk properties within the field of materials science.
Accurate and Reliable Prediction of Energetic and Spectroscopic Properties Via Electronic Structure Methods
Computational chemistry has led to the greater understanding of the molecular world, from the interaction of molecules, to the composition of molecular species and materials. Of the families of computational chemistry approaches available, the main families of electronic structure methods that are capable of accurate and/or reliable predictions of energetic, structural, and spectroscopic properties are ab initio methods and density functional theory (DFT). The focus of this dissertation is to improve the accuracy of predictions and computational efficiency (with respect to memory, disk space, and computer processing time) of some computational chemistry methods, which, in turn, can extend the size of molecule that can be addressed, and, for other methods, DFT, in particular, gain greater insight into which DFT methods are more reliable than others. Much, though not all, of the focus of this dissertation is upon transition metal species – species for which much less method development has been targeted or insight about method performance has been well established. The ab initio approach that has been targeted in this work is the correlation consistent composite approach (ccCA), which has proven to be a robust, ab initio computational method for main group and first row transition metal-containing molecules yielding, on average, accurate thermodynamic properties, i.e., within 1 kcal/mol of experiment for main group species and within 3 kcal/mol of experiment for first row transition metal molecules. In order to make ccCA applicable to systems containing any element from the periodic table, development of the method for second row transition metals and heavier elements, including lower p-block (5p and 6p) elements was pursued. The resulting method, the relativistic pseudopotential variant of ccCA (rp-ccCA), and its application are detailed for second row transition metals and lower p-block elements. Because of the computational cost of ab initio methods, DFT is a popular choice …
Accurate Energetics Across the Periodic Table Via Quantum Chemistry
Greater understanding and accurate predictions of structural, thermochemical, and spectroscopic properties of chemical compounds is critical for the advancements of not only basic science, but also in applications needed for the growth and health of the U.S. economy. This dissertation includes new ab initio composite approaches to predict accurate energetics of lanthanide-containing compounds including relativistic effects, and optimization of parameters for semi-empirical methods for transition metals. Studies of properties and energetics of chemical compounds through various computational methods are also the focus of this research, including the C-O bond cleavage of dimethyl ether by transition metal ions, the study of thermochemical and structural properties of small silicon containing compounds with the Multi-Reference correlation consistent Composite Approach, the development of a composite method for heavy element systems, spectroscopic of compounds containing noble gases and metals (ArxZn and ArxAg+ where x = 1, 2), and the effects due to Basis Set Superposition Error (BSSE) on these van der Waals complexes.
Acenaphthene and 1,10-Phenanthroline-Fused Βeta-Functionalized Porphyrins
A series of acene-fused porphyrins and 1,10-phenanthroline-fused porphyrins were synthesized and characterized via NMR spectroscopy and mass spectrometry. The acene-fused porphyrins exhibit unique optoelectronic properties, most notably they exhibit highly red-shifted absorption bands. The 1,10-phenanthroline-fused porphyrins are of interest for their ability to bond to as variety of metals to form chelation complexes.
Activation of Small Molecules by Transition Metal Complexes via Computational Methods
The first study project is based on modeling Earth abundant 3d transition-metal methoxide complexes with potentially redox-noninnocent ligands for methane C–H bond activation to form methanol (LnM-OMe + CH4 → LnM–Me + CH3OH). Three types of complex consisting of tridentate pincer terpyridine-like ligands, and different first-row transition metals (M = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) were modeled to elucidate the reaction mechanism as well as the effect of the metal identity on the thermodynamics and kinetics of a methane activation reaction. The calculations showed that the d electron count of the metal is a more significant factor than the metal's formal charge in controlling the thermodynamics and kinetics of C–H activation. These researches suggest that late 3d-metal methoxide complexes that favor σ-bond metathesis pathways for methane activation will yield lower barriers for C–H activation, and are more profitable catalyst for future studies. Second, subsequently, on the basis of the first project, density functional theory is used to analyze methane C−H activation by neutral and cationic nickel-methoxide complexes. This study identifies strategies to further lower the barriers for methane C−H activation through evaluation of supporting ligand modifications, solvent polarity, overall charge of complex, metal identity and counterion effects. Overall, neutral low coordinate complexes (e.g. bipyridine) are calculated to have lower activation barriers than the cationic complexes. For both neutral and cationic complexes, the methane C−H activation proceed via a σ-bond metathesis rather than an oxidative addition/reductive elimination pathway. Neutralizing the cationic catalyst models by a counterion, BF4-, has a considerable impact on reducing the methane activation barrier free energy. Third, theoretical studies were performed to explore the effects of appended s-block metal ion crown ethers upon the redox properties of nitridomanganese(V) salen complexes, [(salen)MnV(N)(Mn+-crown ether)]n+, where, M = Na+, K+, Ba2+, Sr2+ for 1Na, 1K, 1Ba, 1Sr …
Adherence/Diffusion Barrier Layers for Copper Metallization: Amorphous Carbon:Silicon Polymerized Films
Semiconductor circuitry feature miniaturization continues in response to Moore 's Law pushing the limits of aluminum and forcing the transition to Cu due to its lower resistivity and electromigration. Copper diffuses into silicon dioxide under thermal and electrical stresses, requiring the use of barriers to inhibit diffusion, adding to the insulator thickness and delay time, or replacement of SiO2 with new insulator materials that can inhibit diffusion while enabling Cu wetting. This study proposes modified amorphous silicon carbon hydrogen (a-Si:C:H) films as possible diffusion barriers and replacements for SiO2 between metal levels, interlevel dielectric (ILD), or between metal lines (IMD), based upon the diffusion inhibition of previous a-Si:C:H species expected lower dielectric constants, acceptable thermal conductivity. Vinyltrimethylsilane (VTMS) precursor was condensed on a titanium substrate at 90 K and bombarded with electron beams to induce crosslinking and form polymerized a-Si:C:H films. Modifications of the films with hydroxyl and nitrogen was accomplished by dosing the condensed VTMS with water or ammonia before electron bombardment producing a-Si:C:H/OH and a-Si:C:H/N and a-Si:C:H/OH/N polymerized films in expectation of developing films that would inhibit copper diffusion and promote Cu adherence, wetting, on the film surface. X-ray Photoelectron Spectroscopy was used to characterize Cu metallization of these a-Si:C:H films. XPS revealed substantial Cu wetting of a-Si:C:H/OH and a-Si:C:H/OH/N films and some wetting of a-Si:C:H/N films, and similar Cu diffusion inhibition to 800 K by all of the a-:S:C:H films. These findings suggest the possible use of a-Si:C:H films as ILD and IMD materials, with the possibility of further tailoring a-Si:C:H films to meet future device requirements.
Adhesion/Diffusion Barrier Layers for Copper Integration: Carbon-Silicon Polymer Films and Tantalum Substrates
The Semiconductor Industry Association (SIA) has identified the integration of copper (Cu) with low-dielectric-constant (low-k) materials as a critical goal for future interconnect architectures. A fundamental understanding of the chemical interaction of Cu with various substrates, including diffusion barriers and adhesion promoters, is essential to achieve this goal. The objective of this research is to develop novel organic polymers as Cu/low-k interfacial layers and to investigate popular barrier candidates, such as clean and modified tantalum (Ta) substrates. Carbon-silicon (C-Si) polymeric films have been formed by electron beam bombardment or ultraviolet (UV) radiation of molecularly adsorbed vinyl silane precursors on metal substrates under ultra-high vacuum (UHV) conditions. Temperature programmed desorption (TPD) studies show that polymerization is via the vinyl groups, while Auger electron spectroscopy (AES) results show that the polymerized films have compositions similar to the precursors. Films derived from vinyltrimethyl silane (VTMS) are adherent and stable on Ta substrates until 1100 K. Diffusion of deposited Cu overlayers is not observed below 800 K, with dewetting occurred only above 400 K. Hexafluorobenzene moieties can also be incorporated into the growing film with good thermal stability. Studies on the Ta substrates demonstrate that even sub-monolayer coverages of oxygen or carbide on polycrystalline Ta significantly degrade the strength of Cu/Ta chemical interactions, and affect the kinetics of Cu diffusion into bulk Ta. On clean Ta, monolayer coverages of Cu will de-wet only above 600 K. A partial monolayer of adsorbed oxygen (3L O2 at 300 K) results in a lowering of the de-wetting temperature to 500 K, while saturation oxygen coverage (10 L O2, 300 K) results in de-wetting at 300 K. Carbide formation also lowers the de-wetting temperature to 300 K. Diffusion of Cu into the Ta substrate at 1100 K occurs only after a 5-minute induction period. This induction period increases …
Adsorbate-enhanced Corrosion Processes at Iron and Iron Oxide Surfaces
This study was intended to provide a fuller understanding of the surface chemical processes which result in the corrosion of ferrous materials.
Advancements in Instrumentation for Fourier Transform Microwave Spectroscopy
The efforts of my research have led to the successful construction of several instruments that have helped expand the field of microwave spectroscopy. The classic Balle-Flygare spectrometer has been modified to include two different sets of antenna to operate in the frequency ranges 6-18 GHz and 18-26 GHz, allowing it to function for a large range without having to break vacuum. This modified FTMW instrument houses two low noise amplifiers in the vacuum chamber to allow for the LNAs to be as close to the antenna as physically possible, improving sensitivity. A new innovative Balle-Flygare type spectrometer, the efficient low frequency FTMW, was conceived and built to operate at frequencies as low as 500 MHz through the use of highly curved mirrors. This is new for FTMW techniques that normally operate at 4 GHz or higher with only a few exceptions around 2 GHz. The chirped pulse FTMW spectrometer uses horn antennas to observe spectra that span 2 GHz versus the standard 1 MHz of a cavity technique. This instrument decreases the amount of time to obtain a large spectral region of relative correct intensity molecular transitions. A Nd:YAG laser ablation apparatus was attached to the classic Balle-Flygare and chirped pulse FTMW spectrometers. This allowed the study of heavy metal containing compounds. The instruments I constructed and the techniques I used have allowed the discovery of further insights into molecular chemistry. I have seen the effects of fluorinating an alkyl halide by determining the geometry of the carbon backbone of trans-1-iodoperfluoropropane and observing a ΔJ = 3 forbidden transition caused by a strong quadrupole coupling constant on this heavy molecule. The quadrupole coupling tensors of butyronitrile, a molecule observed in space, have been improved. The nuclear quadrupole coupling tensor of difluoroiodomethane was added to a list of variably fluorinated methyl …
Affordances of Instrumentation in General Chemistry Laboratories
The purpose of this study is to find out what students in the first chemistry course at the undergraduate level (general chemistry for science majors) know about the affordances of instrumentation used in the general chemistry laboratory and how their knowledge develops over time. Overall, students see the PASCO™ system as a useful and accurate measuring tool for general chemistry labs. They see the probeware as easy to use, portable, and able to interact with computers. Students find that the PASCO™ probeware system is useful in their general chemistry labs, more advanced chemistry labs, and in other science classes, and can be used in a variety of labs done in general chemistry. Students learn the affordances of the probeware through the lab manual, the laboratory teaching assistant, by trial and error, and from each other. The use of probeware systems provides lab instructors the opportunity to focus on the concepts illustrated by experiments and the opportunity to spend time discussing the results. In order to teach effectively, the instructor must know the correct name of the components involved, how to assemble and disassemble it correctly, how to troubleshoot the software, and must be able to replace broken or missing components quickly. The use of podcasts or Web-based videos should increase student understanding of affordances of the probeware.
Aldohaloketenes and the Stereochemistry of Aldohaloketene Cycloadditions
The objective of this research problem was to synthesize aldohaloketenes and investigate the chemistry of this new class of ketenes.
Allowing Students to Have VOICES (Voluntary Options in Chemical Education Schedules) in General Chemistry I
The purpose of this investigation (a quasi-experimental design called a non-equivalent design group (NEDG)) was to determine if allowing students in a science majors general Chemistry I course the choice in establishing the due dates that their homework was due to the instructor would improve course averages. This study covered two semesters with a total of 288 students participating with n = 158 in the fall and n = 130 in the spring. The students self-selected the homework group, VOICES, that best fit his/her needs which included (1) the instructor's homework schedule, (2) a student-customized schedule or a schedule that followed the exam schedule, or (3) all homework due by the last class day prior to the final exam. Online homework was assigned and graded with individual assignment and homework average grades collected and analyzed. No statistically significant differences were found among the VOICES groups with respect to final course average. Other results of this study replicated findings in the literature; namely, that there is a higher correlation between mathematics skills and course success. Course averages of students who had completed Calculus I or higher were statistically significantly higher than students with less completed mathematics coursework in all VOICES groups. Also, the percentage of successful students in the on-sequence semester (fall) was higher than the percentage of students in the off-sequence semester (spring). No differences were seen in any VOICES group's student demographics or high school chemistry preparation.
Aluminum and Copper Chemical Vapor Deposition on Fluoropolymer Dielectrics and Subsequent Interfacial Interactions
This study is an investigation of the chemical vapor deposition (CVD) of aluminum and copper on fluoropolymer surfaces and the subsequent interfacial interactions.
Analysis of Acid Gas Emissions in the Combustion of the Binder Enhanced d-RDF by Ion Chromatography
Waste-to-energy has become an attractive alternative to landfills. One concern in this development is the release of pollutants in the combustion process. The binder enhanced d-RDF pellets satisfy the requirements of environmental acceptance, chemical/biological stability, and being storeable. The acid gas emissions of combusting d-RDF pellets with sulfur-rich coal were analyzed by ion chromatography and decreased when d-RDF pellets were utilized. The results imply the possibility of using d-RDF pellets to substitute for sulfur-rich coal as fuel, and also substantiate the effectiveness of a binder, calcium hydroxide, in decreasing emissions of SOx. In order to perform the analysis of the combustion sample, sampling and sample pretreatment methods prior to the IC analysis and the first derivative detection mode in IC are investigated as well. At least two trapping reagents are necessary for collecting acid gases: one for hydrogen halides, and the other for NOx and SOx. Factors affecting the absorption of acid gases are studied, and the strength of an oxidizing agent is the main factor affecting the collection of NOx and SOx. The absorption preference series of acid gases are determined and the absorption models of acid gases in trapping reagents are derived from the analytical results. To prevent the back-flushing of trapping reagents between impingers when leak-checking, a design for the sampling train is suggested, which can be adopted in sample collections. Several reducing agents are studied for pretreating the sample collected in alkali-permanganate media. Besides the recommendation of the hydrogen peroxide solution in EPA method, methanol and formic acid are worth considering as alternate reducing agents in the pretreatment of alkaline-permanganate media prior to IC analysis. The first derivative conductivity detection mode is developed and used in IC system. It is efficient for the detection and quantification of overlapping peaks as well as being applicable for non-overlapping …
Analysis of PAH and PCB Emissions from the Combustion of dRDF and the Nondestructive Analysis of Stamp Adhesives
This work includes two unrelated areas of research. The first portion of this work involved combusting densified refuse derived fuel (dRDF) with coal and studying the effect that Ca(0H)2 binder had on reducing polycyclic aromatic hydrocarbon (PAH) and polychlorinated biphenyl (PCB) emissions. The second area of work was directed at developing nondestructive infrared techniques in order to aid in the analysis of postage stamp adhesives. With Americans generating 150-200 million tons a year of Municipal Solid Waste (MSW) and disposing of nearly ninety percent of it in landfills, it is easy to understand why American landfills are approaching capacity. One alternative to landfilling is to process the MSW into RDF. There are technical and environmental problems associated with RDF. This work provides some answers concerning the amount of PAH and PCB emissions generated via the combustion of RDF with coal. It was found that the Ca(OH)2 binder greatly reduced both the PAH and the PCB emissions. In fact, PAH emissions at the ten-percent level were reduced more by using the binder than by the pollution control equipment. If the Ca(0H)2 binder can reduce not only PAH and PCB emissions, but also other noxious emissions, such as acid gases or dioxin, RDF technology could soon be the answer to the current landfill problems. The second portion of this work focused on developing a method to analyze stamp adhesives nondestructively. Using this method, it was fairly easy to differentiate among the three different types of adhesives that have been used by the United States Postal Service: gum arabic, dextrin, and polyvinyl alcohol. Differences caused by changes in chemicals added to the adhesives were also detected. Also, forgeries were detected with as much success, if not more, than by conventional methods. This work also led to the construction of equipment that allows large …
The Analysis of PCDD and PCDF Emissions from the Cofiring of Densified Refuse Derived Fuel and Coal
The United States leads the world in per capita production of Municipal Solid Waste (MSW), generating approximately 200 million tons per year. By 2000 A.D. the US EPA predicts a 20% rise in these numbers. Currently the major strategies of MSW disposal are (i) landfill and (ii) incineration. The amount of landfill space in the US is on a rapid decline. There are -10,000 landfill sites in the country, of which only 65-70% are still in use. The Office of Technology Assessment (OTA) predicts an 80% landfill closure rate in the next 20 years. The development of a viable energy resource from MSW, in the form of densified Refuse Derived Fuel (dRDF), provides solutions to the problems of MSW generation and fossil fuel depletions. Every 2 tons of MSW yields approximately 1 ton of dRDF. Each ton of dRDF has an energy equivalent of more than two barrels of oil. At current production rates the US is "throwing away" over 200,000,000 barrels of oil a year. In order to be considered a truly viable product dRDF must be extensively studied; in terms of it's cost of production, it's combustion properties, and it's potential for environmental pollution. In 1987 a research team from the University of North Texas, in conjunction with the US DOE and Argonne National Laboratory (ANL), cofired over 550 tons of dRDF and bdRDF with a high sulfur Kentucky coal in a boiler at ANL. This work examines the emission rates of polychlorinated dioxins (PCDDs) and furans (PCDFs) during the combustion of the dRDF, bdRDF, and coal. Even at levels of 50% by Btu content of dRDF in the fuel feedstock, emission rates of PCDDs and PCDFs were below detection limits. The dRDF is shown to be an environmentally acceptable product, which could help resolve one of the …
The Analysis of Volatile Impurities in Air by Gas Chromatography/Mass Spectrometry
The determination of carbon monoxide is also possible by trapping CO on preconditioned molecular sieve and thermal desorption. Analysis in this case is performed by gas chromatography/mass spectroscopy, although the trapping technique is applicable to other suitable GC techniques.
Application-Focused Investigation of Monovalent Metal Complexes for Nanoparticle Synthesis
Over the last 20 years, there has occurred an increase in the number, scope, and impact of nanomaterials projects. By leveraging the Surface Plasmon Resonance of metallic nanoparticles for labelling, sensing, and treatment, researchers have demonstrated the versatile utility of these nanomaterials in medicine. The literature provides evidence of use of simple, well-known chemistry for nanomaterials synthesis when the focus is new applications of nanomaterials. A case in point, is the synthesis of metallic nanoparticles, whereby HAuCl4, CuCl2, Cu(acac)2, and AgNO3 are typically employed as nanoparticle precursors. Unfortunately, the use of these precursors limits the number of applications available to these materials - particularly for AuNPs in medicine, where the byproducts of nanoparticle synthesis (most often surface-adsorbed reductants, toxic stabilizers, and growth directors) cause nanoparticles to fail clinical trials. Despite the several thousand publications detailing the advancements in nanoparticle therapeutics, as of 2017, there were only 50 FDA-approved nanoparticle formulations. Less than 10 were based on metallic nanoparticles. This is a problem because many of these nanoparticle therapeutics demonstrate potent cell killing ability and labeling of cells. A solution to this problem may be the use of weakly coordinated, monovalent metal complexes, which require only one electron to reduce them to their metallic state. Further, by designing nanoparticle syntheses around these monovalent complexes, we can employ weaker, environmentally friendly stabilizers. This strategy also forgoes the use of exogenous reducing agents, because the monovalent complexes can be reduced and stabilized by one reagent. Herein we investigate the use of Au(Me2S)Cl, [Cu(MeCN)4]BF4, and AgBF4 with green stabilizers to synthesize a variety of nanomaterials. We find that a range of sizes of spherical particles, as well as a range of sizes of gold triangular prisms can be synthesized by using techniques that follow this strategy.
Application of Novel Microporous Polyolefin Silica-Based Substrate in Paper Spray Mass Spectrometry (PS-MS)
This study addressed five key applications of paper spray mass spectrometry (PS-MS): (i) comparative analysis of the microporous substrate with the cellulose-based substrate in drug detection; (ii) detection of more than 190 fentanyl analogs with their fragmentation pattern can be implemented in the future reference for quicker, accurate and sensitive determination; (iii) exploring sweat in a fingerprint to be considered an alternate method to recognize non-invasive markers of metabolites, lipids, narcotics, and explosive residues that can be used in forensic testing applications; (iv) extending and improving better, cost-effective and quick real-time monitoring of the diseased stage using biofluid samples to obtain vastly different lipid information in viral infection such as COVID-19; and (v) mass spectral detection in chemical warfare agent (CWA) stimulant gas exposure with microporous structure absorbency capabilities in air quality monitoring. This novel synthetic material is known as Teslin® (PPG Industries), consisting of a microporous polyolefin single-layered silica matrix, can be used for precise, sensitive, selective, and rapid sample analysis with PS-MS. The Teslin® substrate provided longer activation time for samples and an active signal with a higher concentration of ion formation and mobility compared to cellulose-based papers. Direct analysis of multiple samples showed that, besides being more sensitive to the study and highly efficient with less sample size and spray solvent needed, Teslin® had less interaction with paper source molecules. For less than 60 seconds of processing time, PS-MS can be used as a rapid detection tool, with limited sample preparation requiring less than one microgram of the sample. Overall, the data in this analysis indicate the capacity of the PS-MS as an alternative approach for direct chemical analysis in many applications. Specifically, the waterproof and microporosity characteristics of Teslin® have proven its usefulness in detecting a variety of chemical components in liquid, solid, and gaseous phases …
Application of the Correlation Consistent Composite Approach to Biological Systems and Noncovalent Interactions
Advances in computing capabilities have facilitated the application of quantum mechanical methods to increasingly larger and more complex chemical systems, including weakly interacting and biologically relevant species. One such ab initio-based composite methodology, the correlation consistent composite approach (ccCA), has been shown to be reliable for the prediction of enthalpies of formation and reaction energies of main group species in the gas phase to within 1 kcal mol-1, on average, of well-established experiment, without dependence on experimental parameterization or empirical corrections. In this collection of work, ccCA has been utilized to determine the proton affinities of deoxyribonucleosides within an ONIOM framework (ONIOM-ccCA) and to predict accurate enthalpies of formation for organophosphorus compounds. Despite the complexity of these systems, ccCA is shown to result in enthalpies of formation to within ~2 kcal mol-1 of experiment and predict reliable reaction energies for systems with little to no experimental data. New applications for the ccCA method have also been introduced, expanding the utility of ccCA to solvated systems and complexes with significant noncovalent interactions. By incorporating the SMD solvation model into the ccCA formulation, the Solv-ccCA method is able to predict the pKa values of nitrogen systems to within 0.7 pKa unit (less than 1.0 kcal mol-1), overall. A hydrogen bonding constant has also been developed for use with weakly interacting dimers and small cluster compounds, resulting in ccCA interaction energies for water clusters and dimers of the S66 set to within 1.0 kcal mol-1 of well-established theoretical values.
Applications of Metallic Clusters and Nanoparticles via Soft Landing Ion Mobility, from Reduced to Ambient Pressures
Nanoparticles, simple yet groundbreaking objects have led to the discovery of invaluable information due to their physiological, chemical, and physical properties, have become a hot topic in various fields of study including but not limited to chemistry, biology, and physics. In the work presented here, demonstrations of various applications of chemical free nanoparticles are explored, from the determination of a non-invasive method for the study of the exposome via using soft-landing ion mobility (SLIM) deposited nanoparticles as a matrix-assisted laser desorption/ionization (MALDI-MS) matrix replacement, to the direct SLIM-exposure of nanoparticles onto living organisms. While there is plenty of published work in soft-landing at operating pressures of 1 Torr, the work presented here shows how this technology can be operated at the less common ambient pressure. The ease of construction of this instrument allows for various modifications to be performed for a wide array of applications, furthermore the flexibility in metallic sample, operating pressure, and deposition time only open doors to many other future applications. The work presented will also show that our ambient SLIM system is also able to be operated for toxicological studies, as the operation at ambient pressure opens the door to new applications where vacuum conditions are not desired.
Aqueous Solubilities and Water Induced Transformations of Halogenated Benzenes
Methods of determining the aqueous solubilities of twelve chlorinated benzenes were evaluated in pure and in different water matrices. In pure water, results were comparable with the calculated values. Higher chlorinated tetrachlorobenzenes (TeCBs), pentachlorobenzenes (PCBz), and hexachlorobenzenes (HCBs) gave better precision and accuracy than lower chlorinated monochlorobenzenes (MCBs), dichlorobenzenes (DCBs), or trichlorobenzenes (TCBs).
Aromatic Amino Acid Studies
Pyridine ring analogs of the aromatic amino acids phenylalanine and tyrosine were synthesized and studied in microbiological and mammalian systems.
Aromaticity, Supramolecular Stacks, and Luminescence Properties of Cyclic Trinuclear Complexes
The dissertation covers three major topics: metal-assisted aromaticity, synthetic approaches to tailor donor-acceptor supramolecular stacks, and photoluminescence properties of cyclic trinuclear complexes (CTCs) of d10 metals. First, multiple theoretical approaches are adapted to discuss in detail the origin of aromaticity of CTCs, putting forward a metal-assisted aromaticity model. Next are the discoveries of donor-acceptor stacked CTC–CTC' complexes from both experimental and computational perspectives, reporting multiple novel crystallography-determined structures and revealing their pertinent intermolecular ground-state charge transfer. The spontaneous binding behavior is also determined by UV-vis and NMR titrations and rationalized as the cooperation of multiple supramolecular interactions, including metallophilicity, electrostatic attraction, and dispersion. The last part includes systematic investigations of photoluminescence properties of halogen-metal-bonded CTCs and sandwich-like cation–π-bonded heptanuclear clusters based on CTCs. The cooperative effects of metal-centered conformation, the heavy-atom and relativistic effects from both the halogen and metal atoms play complementary roles in the phosphorescence process to promote the inter-system crossing and radiative transitions.
Atomic Layer Deposition of Boron Oxide and Boron Nitride for Ultrashallow Doping and Capping Applications
The deposition of boron oxide (B₂O₃) films on silicon substrates is of significant interest in microelectronics for ultrashallow doping applications. However, thickness control and conformality of such films has been an issue in high aspect ratio 3D structures which have long replaced traditional planar transistor architectures. B₂O₃ films are also unstable in atmosphere, requiring a suitable capping barrier for passivation. The growth of continuous, stoichiometric B₂O₃ and boron nitride (BN) films has been demonstrated in this dissertation using Atomic Layer Deposition (ALD) and enhanced ALD methods for doping and capping applications. Low temperature ALD of B₂O₃ was achieved using BCl₃/H₂O precursors at 300 K. In situ x-ray photoelectron spectroscopy (XPS) was used to assess the purity and stoichiometry of deposited films with a high reported growth rate of ~2.5 Å/cycle. Free-radical assisted ALD of B₂O₃ was also demonstrated using non-corrosive trimethyl borate (TMB) precursor, in conjunction with mixed O₂/O-radical effluent, at 300 K. The influence of O₂/O flux on TMB-saturated Si surface was investigated using in situ XPS, residual gas analysis mass spectrometer (RGA-MS) and ab initio molecular dynamics simulations (AIMD). Both low and high flux regimes were studied in order to understand the trade-off between ligand removal and B₂O₃ growth rate. Optimization of precursor flux was discovered to be imperative in plasma and radical-assisted ALD processes. BN was investigated as a novel capping barrier for B₂O₃ and B-Si-oxide films. A BN capping layer, deposited using BCl₃/NH₃ ALD at 600 K, demonstrated excellent stoichiometry and consistent growth rate (1.4 Å/cycle) on both films. Approximately 13 Å of BN was sufficient to protect ~13 Å of B₂O₃ and ~5 Å of B-Si-oxide from atmospheric moisture and prevent volatile boric acid formation. BN/B₂O₃/Si heterostructures are also stable at high temperatures (>1000 K) commonly used for dopant drive-in and activation. BN shows great …
Atomic Layer Deposition of H-BN(0001) on Transition Metal Substrates, and In Situ XPS Study of Carbonate Removal from Lithium Garnet Surfaces
The direct epitaxial growth of multilayer BN by atomic layer deposition is of critical significance forfo two-dimensional device applications. X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED) demonstrate layer-by-layer BN epitaxy on two different substrates. One substrate was a monolayer of RuO2(110) formed on a Ru(0001) substrate, the other was an atomically clean Ni(111) single crystal. Growth was accomplished atomic layer deposition (ALD) cycles of BCl3/NH3 at 600 K substrate temperature and subsequent annealing in ultrahigh vacuum (UHV). This yielded stoichiometric BN layers, and an average BN film thickness linearly proportional to the number of BCl3/NH3 cycles. The BN(0001)/RuO2(110) interface had negligible charge transfer or band bending as indicated by XPS and LEED data indicate a 30° rotation between the coincident BN and oxide lattices. The atomic layer epitaxy of BN on an oxide surface suggests new routes to the direct growth and integration of graphene and BN with industrially important substrates, including Si(100). XPS and LEED indicated epitaxial deposition of h-BN(0001) on the Ni(111) single crystal by ALD, and subsequent epitaxially aligned graphene was deposited by chemical vapor deposition (CVD) of ethylene at 1000 K. Direct multilayer, in situ growth of h-BN on magnetic substrates such as Ni is important for spintronic device applications. Solid-state electrolytes (SSEs) are of significant interest for their promise as lithium-ion conducting materials but are prone to degradation due to lithium carbonate formation on the surface upon exposure to atmosphere, adversely impacting Li ion conduction. In situ XPS monitored changes in the composition of the SSE Li garnet (Li6.5La3Zr1.5Ta0.5O12, LLZTaO) upon annealing in UHV and upon Ar+ ion sputtering. Trends in core level spectra demonstrate that binding energy (BE) calibration of the Li 1s at 56.4 eV, yields a more consistent interpretation of results than the more commonly used standard of the …
Bifunctional Enamine‐Metal Lewis Acid Catalysis and α-Enaminones for Cyclization Reactions
The use of enamines continues to be an important tool in organic syntheses as both a catalyst and reactant. The addition of metal catalysts coupled with enamine catalysis has generated many reactions that normally would not occur separately. However, catalysts' incompatibility is an issue that we wish to solve allowing new chemistry to occur without hindrance. The use of enamines has continued to be a well-studied area of organic chemistry, but the field is ripe for different types of enamines to gain the spotlight. Enaminones are enamines with both nucleophilic and electrophilic properties. They allow reactions that are normally not possible with enamines to become obtainable. Chapter 1 is a brief introduction on enamines and the reason they gained so much attention. Then ends with enaminones and what makes them interesting reactants. Chapter 2 described a new synthesis for the tricyclic synthesis of chromanes using a novel bifunctional catalyst system of enamine-metal Lewis acid giving great yields (up to 87 %yield) and excellent stereoselectivity (up to 99 % ee). Chapter 3 covered new reactions for ring-open cyclopropane (up to 94% yield), tetrahydroquinolinones (up to 84% yield) and enantiospecific tetrahydroquinolinones (up to 84% yield and 97% ee) using α-enaminone and donor-acceptor cyclopropanes. Finally, Chapter 4 focused a new method for synthesizing benzobicyclo[3.2.1]octanes with an added sterically bulky quaternary center and imine functionalization giving yields between 36-73% yield using α-enaminone with alkylidene malonates.
Biological Applications of a Strongly Luminescent Platinum (II) Complex in Reactive Oxygen Species Scavenging and Hypoxia Imaging in Caenorhabditis elegans
Phosphorescent transition metal complexes make up an important group of compounds that continues to attract intense research owing to their intrinsic bioimaging applications that arise from bright emissions, relatively long excited state lifetimes, and large stokes shifts. Now for biomaging assay a model organism is required which must meet certain criteria for practical applications. The organism needs to be small, with a high turn-over of progeny (high fecundity), a short lifecycle, and low maintenance and assay costs. Our model organism C. elegans met all the criteria. The ideal phosphor has low toxicity in the model organism. In this work the strongly phosphorescent platinum (II) pyrophosphito-complex was tested for biological applications as a potential in vivo hypoxia sensor. The suitability of the phosphor was derived from its water solubility, bright phosphorescence at room temperature, and long excited state lifetime (~ 10 µs). The applications branched off to include testing of C. elegans survival when treated with the phosphor, which included lifespan and fecundity assays, toxicity assays including the determination of the LC50, and recovery after paraquat poisoning. Quenching experiments were performed using some well knows oxygen derivatives, and the quenching mechanisms were derived from Stern-Volmer plots. Reaction stoichiometries were derived from Job plots, while percent scavenging (or antioxidant) activities were determined graphically. The high photochemical reactivity of the complex was clearly manifested in these reactions.
Biological Inhibitors
Four isosteric series of plant growth-regulating compounds were prepared. Using an Avena sativa coleptile assay system, derivatives in series I and IV inhibited segment elongation to a greater degree than did comparable derivatives in series II and III.
Bonding Studies in Group IV Substituted n,n-dimethylanilines
The purpose of the present work is to study the effects of the trimethylsilyl and trimethylgermyl substituents on the N,N-dimethylamino ring system. Both ground and excited state interactions were studied and their magnitudes determined. The experimental data were then used in conjunction with molecular orbital calculations to differentiate among, and determine the importance of, d-p bonding, hyperconjugation or polarization of the trimethylsilyl group on the ground and excited state bonding.
Calcium Aluminates Synthesis, Characterization, and Hydration Behavior
The hydration behavior of the calcium aluminates as a function of the glass content, the curing temperature, and the water-solid ratio was investigated. In order to keep them from influencing the results, the free-lime content and the surface area of all samples were kept constant, whenever possible. Samples were hydrated with a water-solid ratio of 10/1 for periods of 1 to 90 days. Three curing temperatures were studied; 2°C, 25°C, and 50°C. Samples were hydrated in tightly sealed polyethylene containers to prevent reactions with atmospheric carbon dioxide. The hydration was followed by X-ray diffraction and thermal analysis. Only two samples, Hexacalcium Tetra-alumino Magnesium Silicate and Tricalcium Magnesium Dialuminate, were successfully prepared in an amorphous form. These compounds were used to investigate the effect of glass content on the hydration behavior. Results indicate that when the glass content is increased a corresponding increase is found in the percent combined water. Samples hydrated at 25°C were influenced by changes in the glass content to a greater degree than were those hydrated at either 2°C or 50°C. The effect of the water-solid ratio on the hydration behavior of the calcium aluminates was studied using the compounds; Hexacalcium Tetra-Alumino Magnesium Silicate/ and Dodecacalcium Hepta-Aluminate. In general, samples that were hydrated with large water-solid ratios reacted more completely than did those hydrated with small water-solid ratios. The presence of sufficient water to theoretically hydrate the samples to completion did not guarantee that the sample would do so. The curing temperature influenced the hydration behavior to a greater degree than did the glass content or the water-solid ratio. Increasing the curing temperature not only increased the rate of hydration, but, in some cases, also changed the hydration products.
Calcium Silicates: Glass Content and Hydration Behavior
Pure, MgO doped and B2C3 doped monocalcium, dicalcium, and tricalcium silicates were prepared with different glass contents. Characterization of the anhydrous materials was carried out using optical microscopy, infrared absorption spectroscopy, and X-ray powder diffraction. The hydration of these compounds was studied as a function of the glass contents. The hydration studies were conducted at 25°C. Water/solid ratios of 0.5, 1, 10, and 16 were used for the various experiments. The hydration behavior was monitored through calorimetry, conductometry, pH measurements, morphological developments by scanning electron microscopy, phase development by X-ray powder diffraction, and percent combined water by thermogravimetry. A highly sensitive ten cell pseudo-adiabatic microcalorimeter was designed and constructed for early hydration studies. Conductometry was found to be of great utility in monitoring the hydration of monocalcium silicate and the borate doped dicalcium silicates.
Carbon Nanostructure Based Donor-acceptor Systems for Solar Energy Harvesting
Carbon nanostructure based functional hybrid molecules hold promise in solarenergy harvesting. Research presented in this dissertation systematically investigates building of various donor-acceptor nanohybrid systems utilizing enriched single walled carbon nanotube and graphene with redox and photoactive molecules such as fullerene, porphyrin, and phthalocyanine. Design, synthesis, and characterization of the donor-acceptor hybrid systems have been carefully performed via supramolecular binding strategies. Various spectroscopic studies have provided ample information in terms of establishment of the formation of donor-acceptor hybrids and their extent of interaction in solution and eventual rate of photoinduced electron and/or energy transfer. Electrochemical studies enabled construction of energy level diagram revealing energetic details of the possible different photochemical events supported by computational studies carried out to establish the HOMO-LUMO levels in the donor acceptor systems. Transient absorption studies confirmed formation of charge separated species in the donor-acceptor systems which have been supported by electron mediation experiments. Based on the photoelectrochemical studies, IPCE of 8% was reported for enriched SWCNT(7,6)-ZnP donor-acceptor systems. In summary, the present investigation on the various nanocarbon sensitized donor-acceptor hybrids substantiates tremendous prospect, that could very well become the next generation of materials in building efficient solar energy harvesting devices andphotocatalyst.
Catalytic Calcination of Calcium Carbonate
The calcination of calcium carbonate in a cement or a lime kiln uses approximately two to four times the theoretical quantity of energy predicted from thermodynamic calculation depending upon the type of the kiln used (1.4 x 10^6 Btu/ton theoretical to 6 x 10^6 Btu/ton actual). The objective of this research was to attempt to reduce the energy required for the calcination by 1. decreasing the calcination temperature of calcium carbonate, and/or 2. increasing the rate of calcination at a specific temperature. Assuming a catalytic enhancement of 20 percent in the industrial applications, an energy savings of 300 million dollars annually in the United States could be reached in the cement and lime industries. Three classes of compounds to date have shown a positive catalytic effect on the calcination of calcium carbonate. These include alkali halides, phospho- and silico-molybdate complexes, and the fused carbonates system.
Characterization of Ionic Liquid Solvents Using a Temperature Independent, Ion-Specific Abraham Parameter Model
Experimental data for the logarithm of the gas-to-ionic liquid partition coefficient (log K) have been compiled from the published literature for over 40 ionic liquids over a wide temperature range. Temperature independent correlations based on the Gibbs free energy equation utilizing known Abraham solvation model parameters have been derived for the prediction of log K for 12 ionic liquids to within a standard deviation of 0.114 log units over a temperature range of over 60 K. Temperature independent log K correlations have also been derived from correlations of molar enthalpies of solvation and molar entropies of solvation, each within standard deviations of 4.044 kJ mol-1 and 5.338 J mol-1 K-1, respectively. In addition, molar enthalpies of solvation and molar entropies of solvation can be predicted from the Abraham coefficients in the temperature independent log K correlations to within similar standard deviations. Temperature independent, ion specific coefficients have been determined for 26 cations and 15 anions for the prediction of log K over a temperature range of at least 60 K to within a standard deviation of 0.159 log units.
Characterization of Low Barrier Hydrogen Bonds in Enzyme Catalysis: an Ab Initio and DFT Investigation
Hartree-Fock, Moller-Plesset, and density functional theory calculations have been carried out using 6-31+G(d), 6-31+G(d,p) and 6-31++G(d,p) basis sets to study the properties of low-barrier or short-strong hydrogen bonds (SSHB) and their potential role in enzyme-catalyzed reactions that involve proton abstraction from a weak carbon-acid by a weak base. Formic acid/formate anion, enol/enolate and other complexes have been chosen to simulate a SSHB system. These complexes have been calculated to form very short, very short hydrogen bonds with a very low barrier for proton transfer from the donor to the acceptor. Two important environmental factors including small amount of solvent molecules that could possibly exist at the active site of an enzyme and the polarity around the active site were simulated to study their energetic and geometrical influences to a SSHB. It was found that microsolvation that improves the matching of pK as of the hydrogen bond donor and acceptor involved in the SSHB will always increase the interaction of the hydrogen bond; microsolvation that disrupts the matching of pKas, on the other hand, will lead to a weaker SSHB. Polarity surrounding the SSHB, simulated by SCRF-SCIPCM model, can significantly reduce the strength and stability of a SSHB. The residual strength of a SSHB is about 10--11 kcal/mol that is still significantly stable compared with a traditional weak hydrogen bond that is only about 3--5 kcal/mol in any cases. These results indicate that SSHB can exist under polar environment. Possible reaction intermediates and transition states for the reaction catalyzed by ketosteroid isomerase were simulated to study the stabilizing effect of a SSHB on intermediates and transition states. It was found that at least one SSHB is formed in each of the simulated intermediate-catalyst complexes, strongly supporting the LBHB mechanism proposed by Cleland and Kreevoy. Computational results on the activation energy for …
Characterization of Novel Solvents and Absorbents for Chemical Separations
Predictive methods have been employed to characterize chemical separation mediums including solvents and absorbents. These studies included creating Abraham solvation parameter models for room-temperature ionic liquids (RTILs) utilizing novel ion-specific and group contribution methodologies, polydimethyl siloxane (PDMS) utilizing standard methodology, and the micelles cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfate (SDS) utilizing a combined experimental setup methodology with indicator variables. These predictive models allows for the characterization of both standard and new chemicals for use in chemical separations including gas chromatography (GC), solid phase microextraction (SPME), and micellar electrokinetic chromatography (MEKC). Gas-to-RTIL and water-to-RTIL predictive models were created with a standard deviation of 0.112 and 0.139 log units, respectively, for the ion-specific model and with a standard deviation of 0.155 and 0.177 log units, respectively, for the group contribution fragment method. Enthalpy of solvation for solutes dissolved into ionic liquids predictive models were created with ion-specific coefficients to within standard deviations of 1.7 kJ/mol. These models allow for the characterization of studied ionic liquids as well as prediction of solute-solvent properties of previously unstudied ionic liquids. Predictive models were created for the logarithm of solute's gas-to-fiber sorption and water-to-fiber sorption coefficient for polydimethyl siloxane for wet and dry conditions. These models were created to standard deviations of 0.198 and 0.122 logunits for gas-to-PDMS wet and dry, respectively, as well as 0.164 and 0.134 log units for water-to-PDMS wet and dry, respectively. These models are particularly useful in solid phase microextraction separations. Micelles were studied to create predictive models of the measured micelle-water partition coefficient as well as models of measured MEKC chromatographic retention factors for CTAB and SDS. The resultant predictive models were created with standard deviations of 0.190 log units for the logarithm of the mole fraction concentration of water-to-CTAB, 0.171 log units for the combined logarithms of both the …
Characterization of Post-Plasma Etch Residues and Plasma Induced Damage Evaluation on Patterned Porous Low-K Dielectrics Using MIR-IR Spectroscopy
As the miniaturization of functional devices in integrated circuit (IC) continues to scale down to sub-nanometer size, the process complexity increases and makes materials characterization difficult. One of our research effort demonstrates the development and application of novel Multiple Internal Reflection Infrared Spectroscopy (MIR-IR) as a sensitive (sub-5 nm) metrology tool to provide precise chemical bonding information that can effectively guide through the development of more efficient process control. In this work, we investigated the chemical bonding structure of thin fluorocarbon polymer films deposited on low-k dielectric nanostructures, using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Complemented by functional group specific chemical derivatization reactions, fluorocarbon film was established to contain fluorinated alkenes and carbonyl moieties embedded in a highly cross-linked, branched fluorocarbon structure and a model bonding structure was proposed for the first time. In addition, plasma induced damage to high aspect ratio trench low-k structures especially on the trench sidewalls was evaluated both qualitatively and quantitatively. Damage from different plasma processing was correlated with Si-OH formation and breakage of Si-CH3 bonds with increase in C=O functionality. In another endeavor, TiN hard mask defect formation after fluorocarbon plasma etch was characterized and investigated. Finding suggest the presence of water soluble amines that could possibly trigger the formation of TiN surface defect. An effective post etch treatment (PET) methods were applied for etch residue defect removal/suppression.
Chemical and Electronic Structure of Aromatic/Carborane Composite Films by PECVD for Neutron Detection
Boron carbide-aromatic composites, formed by plasma-enhanced co-deposition of carboranes and aromatic precursors, present enhanced electron-hole separation as neutron detector. This is achieved by aromatic coordination to the carborane icosahedra and results in improved neutron detection efficiency. Photoemission (XPS) and FTIR suggest that chemical bonding between B atoms in icosahedra and aromatic contents with preservation of π system during plasma process. XPS, UPS, density functional theory (DFT) calculations, and variable angle spectroscopic ellipsometery (VASE) demonstrate that for orthocarborane/pyridine and orthocarborane/aniline films, states near the valence band maximum are aromatic in character, while states near the conduction band minimum include those of either carborane or aromatic character. Thus, excitation across the band gap results in electrons and holes on carboranes and aromatics, respectively. Further such aromatic-carborane interaction dramatically shrinks the indirect band gap from 3 eV (PECVD orthocarborane) to ~ 1.6 eV (PECVD orthocarborane/pyridine) to ~1.0 eV (PECVD orthocarborane/aniline), with little variation in such properties with aromatic/orthocarborane stoichiometry. The narrowed band gap indicate the potential for greatly enhanced charge generation relative to PECVD orthocarborane films, as confirmed by zero-bias neutron voltaic studies. The results indicate that the enhanced electron-hole separation and band gap narrowing observed for aromatic/orthocarborane films relative to PECVD orthocarborane, has significant potential for a range of applications, including neutron detection, photovoltaics, and photocatalysis. Acknowledgements: This work was supported by the Defense Threat Reduction Agency (Grant No.HDTRA1-14-1-0041). James Hilfiker is also gratefully acknowledged for stimulating discussions.
Chemical Equilibria in Binary Solvents
Dissertation research involves development of Mobile Order Theory thermodynamic models to mathematically describe and predict the solubility, spectral properties, protonation equilibrium constants and two-phase partitioning behavior of solutes dissolved in binary solvent mixtures of analytical importance. Information gained provide a better understanding of solute-solvent and solvent-solvent interactions at the molecular level, which will facilitate the development of better chemical separation methods based upon both gas-liquid and high-performance liquid chromatography, and better analysis methods based upon complexiometric and spectroscopic methods. Dissertation research emphasizes chemical equilibria in systems containing alcohol cosolvents with the understanding that knowledge gained will be transferable to more environmentally friendly aqueous-organic solvent mixtures.
Chemically Optimized Cu Etch Bath Systems for High-Density Interconnects and the FTIR Operando Exploration of the Nitrogen Reduction Reaction on a Vanadium Oxynitride Electrocatalyst
Printed circuit board manufacturing involves subtractive copper (Cu) etching where fine features are developed with a specific spatial resolution and etch profile of the Cu interconnects. A UV-Vis ATR metrology, to characterize the chemical transitions, has been developed to monitor the state of the bath by an in-situ measurement. This method provides a direct correlation of the Cu etch bath and was able to predict a 35% lower etch rate that was not predicted by the three current monitoring methods (ORP, specific gravity, and conductivity). Application of this UV-Vis ATR probe confirmed that two industrial etch baths, in identical working conditions, confirmed a difference in Cu2+ concentration by the difference of the near IR 860nm peak. The scope of this probe allowed chemically specific monitoring of the Cu etch bath to achieve a successful regeneration for repeated use. Interlayer dielectrics (ILDs) provide mechanical and electrical stability to the 3D electrical interconnects found in IC devices. It is particularly important that the structural support is created properly in the multilayered architecture to prevent the electrical cross signaling in short range distances. A combined multiple internal reflection and transmission FTIR has been employed for the characterization of silicon oxycarbonitride (SiOCN) films. These dielectric low-k films incorporate various functional groups bonded to silicon and require chemical bonding insight in the transformation and curing process. Distinct SiOx bonding patterns were differentiated, and the structure of the films can be predicted based on the amount of Si network and caged species. Further optimization of the FTIR analysis must minimize interference from moisture that can impact the judgement of peak heights. To accommodate this, a high-quality glove box was designed for dry air feedthrough to achieve a 95% moisture reduction during analysis, where less than 0.1 mAbs of moisture is detected in the spectra (without additional …
Chemistry, Detection, and Control of Metals during Silicon Processing
This dissertation focuses on the chemistry, detection, and control of metals and metal contaminants during manufacturing of integrated circuits (ICs) on silicon wafers. Chapter 1 begins with an overview of IC manufacturing, including discussion of the common aqueous cleaning solutions, metallization processes, and analytical techniques that will be investigated in subsequent chapters. Chapter 2 covers initial investigations into the chemistry of the SC2 clean - a mixture of HCl, H2O2, and DI water - especially on the behavior of H2O2 in this solution and the impact of HCl concentration on metal removal from particle addition to silicon oxide surfaces. Chapter 3 includes a more generalized investigation of the chemistry of metal ions in solution and how they react with the silicon oxide surfaces they are brought into contact with, concluding with illumination of the fundamental chemical principles that govern their behavior. Chapter 4 shows how metal contaminants behave on silicon wafers when subjected to the high temperature (≥ 800 °C) thermal cycles that are encountered in IC manufacturing. It demonstrates that knowledge of some fundamental thermodynamic properties of the metals allow accurate prediction of what will happen to a metal during these processes. Chapter 5 covers a very different but related aspect of metal contamination control, which is the effectiveness of metal diffusion barriers (e.g. Ru) in holding a metal of interest, (e.g. Cu), where it is wanted while preventing it from migrating to places where it is not wanted on the silicon wafer. Chapter 6 concludes with an overview of the general chemical principles that have been found to govern the behavior of metals during IC manufacturing processes.
Chromatographic and Spectroscopic Studies on Aquatic Fulvic Acid
High Performance Liquid Chromatography (HPLC) was used to investigate the utility of this technique for the analytical and preparative separation of components of aquatic fulvic acids (FA). Three modes of HPLC namely adsorption, anion exchange and reversed phase were evaluated. Aquatic fulvic acids were either extracted from surface water and sediment samples collected from the Southwest of the U.S., or were provided in a high purity form from the USGS. On the adsorption mode, a major fraction of aquatic fulvic acid was isolated on a semipreparative scale and subjected to Carbon-13 NMR and FAB Mass Spectroscopy. Results indicated that (1) The analyzed fraction of fulvic acid contains more aliphatic than aromatic moieties; (2) Methoxy, carboxylic acids, and esters are well-defined moieties of the macromolecule; (3) Phenolic components of the macromolecules were not detected in the Carbon-13 NMR spectrum possibly because of the presence of stable free radicals. Results of the anion exchange mode have shown that at least three types of acidic functionalities in aquatic fulvic acid can be separated. Results also indicated that aquatic fulvic acid can be progressively fractionated by using subsequent modes of HPLC. Results of reversed phase mode have shown that (1) The fractionation of aquatic fulvic acid by RP-HPLC is essentially controlled by the polarity and/or pH of the carrier solvent system; (2) Under different RP-HPLC conditions aquatic fulvic acid from several locations are fractionated into the same major components; (3) Fulvic acid extracted from water and sediment from the same site are more similar than those extracted from different sites; (4) Cationic and anionic ion pair reagents indicated the presence of amphoteric compounds within the polymeric structure of fulvic acid. Each mode of HPLC provided a characteristic profile of fulvic acid. The results of this research provided basic information on the behavior of aquatic …
Cleaner Futures: Covalent Organic Frameworks for Sustainable Degradation of Lignocellulosic Materials
As countries pledge their commitment to a net-zero future, much of the previously forgotten climate change research were revitalized by efforts from both governmental and private sectors. In particular, the utilization of lignocellulosic materials saw a special spotlight in research interest for its abundance and its carbon removal capability during photosynthesis. The initial effort in mimicking enzymatic active sites of β-glucosidase will be explored. The crystalline covalent organic frameworks (COFs) allowed for the introduction of a variety of noncovalent interactions, which enhanced the adsorption and the catalytic activity against cellobiose and its glycosidic bonds. The physical processes associated with this reaction, such as the kinetics, equilibrium, and activation energies, will be closely examined and compared with existing standard materials and comparable advanced catalysts. In addition, several variants of COFs were synthesized to explore the effect of various noncovalent interactions with cellobiose. A radical-bearing COF was synthesized and characterized. The stability of this radical was examined by electron paramagnetic resonance spectroscopy (EPR) and its oxidative capability tested with model lignin and alcoholic compounds. The reaction products are monitored and identified using gas chromatography-mass spectroscopy (GC-MS). An oxidative coupling of phenol was explored, and its initial results are presented in chapter 5.
Combined Electrochemistry and Spectroscopy of Complexes and Supramolecules containing Bipyridyl and Other Azabiphenyl Building Blocks
A group of azabiphenyl complexes and supramolecules, and their reduced and oxidized forms when possible, were characterized by cyclic voltammetry and electronic absorption spectroscopy. The oxidized and reduced species, if sufficiently stable, were further generated electrochemically inside a specially designed quartz cell with optically transparent electrode, so that the spectra of the electrochemically generated species could be taken in situ. Assignments were proposed for both parent and product electronic spectra. Species investigated included a range of Ru(II) and Pt(II) complexes, as well as catenanes and their comparents. Using the localized electronic model, the electrochemical reduction can be in most cases assigned as azabiphenyl-based, and the oxidation as transition metal-based. This is consistent with the fact that the azabiphenyl compounds have a low lying π* orbital. The electronic absorption spectra of the compounds under study are mainly composed of π —> π* bands with, in some cases, charge transfer bands also.
A Comprehensive Investigation of Photoinduced Electron Transfer and Charge Transfer Mechanisms in Push-Pull Donor-Acceptor Systems: Implications for Energy Harvesting Applications
Donor-acceptor systems exhibit distinctive attributes rendering them highly promising for the emulation of natural photosynthesis and the efficient capture of solar energy. This dissertation is primarily devoted to the investigation of these unique features within diverse donor-acceptor system typologies, encompassing categories such as closely covalently linked, push-pull, supramolecular, and multi-modular donor- acceptor conjugates. The research encompasses an examination of photosynthetic analogs involving compounds such as chelated azadipyromethene (AzaBODIPY), N,N-dimethylaminophenyl (NND), phenothiazine (PTZ), triphenylamine (TPA), phenothiazine sulfone (PTZSO2), tetracyanobutadiene (TCBD), and expanded tetracyanobutadiene (exTCBD). The strategic configuration of the donor (D), acceptor (A), and spacer elements within these constructs serves to promote intramolecular charge transfer (ICT), which are crucial for efficient charge and electron transfer. The employment of cutting-edge analytical techniques, such as ultrafast transient absorption spectroscopy, is integral to the study. Furthermore, a comprehensive suite of analytical methodologies including steady-state UV-visible absorption spectroscopy, fluorescence and phosphorescence spectroscopies, electrochemical techniques (including cyclic voltammetry and differential pulse voltammetry), spectroelectrochemistry, and density functional theory calculation (DFT), collectively contribute to the comprehensive characterization of push-pull donor-acceptor systems, with a particular emphasis on their potential as highly effective solar energy harvesting application.
Computational and Experimental Studies of the Photoluminescence, Reactivity and Structural Properties of d10 and d8 Metal Complexes
Computational chemistry has gained interest as a characterization tool to predict photoluminescence, reactivity and structural properties of organic and transition metal complexes. With the rise of methods including relativity, these studies have been expanded to the accurate modeling of luminescence spectra of complexes with considerable spin-orbit splitting due to heavy metal centers as well as the reaction pathways for these complexes to produce natural products such as hydrogen gas. These advances have led to the synthesis and utility of more effective catalysis as well as the development of more effective organic light emitting diodes (OLEDs) through the incorporation of organometallic complexes as emitters instead of typical organic emitters. In terms of significant scientific advancement presented in this work is in relation to the discovery of significant spin-orbit splitting in a gold(I) alkylphosphine complex, where the splitting results in the states that emit in different colors of the visible region of the electromagnetic spectrum. This work also reveals the discovery both computationally and experimentally, of a genuine polar-covalent bond between two-closed shell metals. This work highlights a complex with an incredibly short gold(I) – copper(I) intermetallic distance leading to a vibrational frequency and dissociation energy that is on par with those of other systems with single-bonded metal centers. Lastly, this work outlines a strategy for the production of hydrogen gas through the use of trinuclear cyclic coinage metal complexes as catalysis to split hydrohalic acids.
Computational Development of Trimetallic Cyclotrimers for Gas-Filtration Applications through Non-Covalent Interactions
Photophysical properties of an array of various polyaromatic hydrocarbons were benchmarked with B3LYP, M06 and B97D methods coupled with Pople and CEP-31G(d) basis sets. Results from the benchmark show the importance of diffuse basis sets when modeling the electronic properties of highly conjugated systems and provide qualitative reliable accuracy with certain levels of theory. B97D and M06 are applied to modeling pyrene adducts governed by non-covalent interactions in both gaseous and condensed states to reproduce experimental spectra. DFT calculations with both B97D and M06 functionals show qualitatively and quantitatively that pyrene dimer is a stronger π–base as compared to its monomer. Binding energies coupled with MEP, PCA and Qzz results show that the difference in π-basicity of the monomer and dimer impacts the supramolecular chemistry involved in adducts formed with super π-acidic silver cyclometallic trimer (CTC). Non-covalent interactions between coinage metal CTCs and ammonia/phosphine substrates is reported. Interactions between these substrates and the facial plane of the π-rich gold CTC reveal a novel interaction, where the typical Lewis acid/base roles are reversed for the substrates. Adducts formed through this type of interaction define typical Lewis bases like ammonia and phosphine as Lewis acids, wherein the partially positive hydrogens coordinate to the metallo-aromatic center through dipole-quadrupole interactions. Interactions of ammonia at the side positions is shown to heavily impact the Lewis basicity of the CTC facial plane leading to similar interactions exhibited by the ammonia-gold CTC adducts. Structural and electronic properties of the adducts modeled are examined.
Back to Top of Screen