You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Physics
 Collection: UNT Theses and Dissertations
Ion-Induced Damage In Si: A Fundamental Study of Basic Mechanisms over a Wide Range of Implantation Conditions

Ion-Induced Damage In Si: A Fundamental Study of Basic Mechanisms over a Wide Range of Implantation Conditions

Date: May 2006
Creator: Roth, Elaine Grannan
Description: A new understanding of the damage formation mechanisms in Si is developed and investigated over an extended range of ion energy, dose, and irradiation temperature. A simple model for dealing with ion-induced damage is proposed, which is shown to be applicable over the range of implantation conditions. In particular the concept of defect "excesses" will be discussed. An excess exists in the lattice when there is a local surplus of one particular type of defect, such as an interstitial, over its complimentary defect (i.e., a vacancy). Mechanisms for producing such excesses by implantation will be discussed. The basis of this model specifies that accumulation of stable lattice damage during implantation depends upon the excess defects and not the total number of defects. The excess defect model is validated by fundamental damage studies involving ion implantation over a range of conditions. Confirmation of the model is provided by comparing damage profiles after implantation with computer simulation results. It will be shown that transport of ions in matter (TRIM) can be used effectively to model the ion-induced damage profile, i.e. excess defect distributions, by a simple subtraction process in which the spatially correlated defects are removed, thereby simulating recombination. Classic defect studies ...
Contributing Partner: UNT Libraries
Magnetic Resonance of Protons in the Earth's Magnetic Field

Magnetic Resonance of Protons in the Earth's Magnetic Field

Date: August 1959
Creator: Crosby, Richard Hill
Description: The purpose of the work reported here was to determine the feasibility of applying the nuclear induction technique of Bloch to the direct observation of nuclear magnetic resonance in the very weak magnetic field of the earth.
Contributing Partner: UNT Libraries
Magnetic Susceptibility of a Crystalline Free Radical

Magnetic Susceptibility of a Crystalline Free Radical

Date: June 1962
Creator: Smith, William C.
Description: The entirety of the investigation discussed in this paper was confined to a study of the spin resonance properties of unpaired electrons of an organic free radical. In the remainder of the paper the theory of electron spin resonance, the apparatus used in the investigation, and the experimental results obtained are discussed in that order.
Contributing Partner: UNT Libraries
Magnetically Driven Instabilities in Gas Discharges

Magnetically Driven Instabilities in Gas Discharges

Date: August 1963
Creator: Choate, Jimmie W.
Description: In the present experiment a gas discharge plasma generator was designed and constructed and a search was made for evidence of a plasma instability due to the influence of an externally applied magnetic field. The evidence for such an unstable mode of operation is too indirect to make a possible conclusion, but an approach to more certain identification will be indicated.
Contributing Partner: UNT Libraries
Magnetomorphic Oscillations in Cadmium Cylinders

Magnetomorphic Oscillations in Cadmium Cylinders

Date: August 1969
Creator: Hight, Ralph D.
Description: The work presented here is an experimental investigation of the effect of cylindrical geometry on electrical conductivity, in which single-crystal samples of cadmium at the temperature of liquid helium are used, with the diameter on the order of the electron mean free path.
Contributing Partner: UNT Libraries
Magnetomorphic Oscillations in Zinc

Magnetomorphic Oscillations in Zinc

Date: August 1970
Creator: Waller, William Marvin
Description: In making this study it is important to search for ways to enhance and, if possible, make detection of MMO signals simpler in order that this technique for obtaining FS measurements may be extended to other materials. This attempt to improve measurement techniques has resulted in a significant discovery: the eddy-current techniques described in detail in a later section which should allow MMO to be observed and sensitively measured in many additional solids. The second major thrust of the study has been to use the newly discovered eddy-current technique in obtaining the first indisputable observation of MMO in zinc.
Contributing Partner: UNT Libraries
Magnetotransport Properties of  AlxIn1-xAsySb1-y/GaSb and Optical Properties of GaAs1-xSbx

Magnetotransport Properties of AlxIn1-xAsySb1-y/GaSb and Optical Properties of GaAs1-xSbx

Date: May 2003
Creator: Lukic- Zrnic, Reiko
Description: Multilayer structures of AlxIn1-xAsySb1-y/GaSb (0.37 £ x £ 0.43, 0.50 £ y £ 0.52), grown by molecular beam epitaxy on GaSb (100) substrates were characterized using variable temperature Hall and Shubnikov-de Haas techniques. For nominally undoped structures both p and n-type conductivity was observed. The mobilities obtained were lower than those predicted by an interpolation method using the binary alloys; therefore, a detailed analysis of mobility versus temperature data was performed to extract the appropriate scattering mechanisms. For p-type samples, the dominant mechanism was ionized impurity scattering at low temperatures and polar optical phonon scattering at higher temperatures. For n-type samples, ionized impurity scattering was predominant at low temperatures, and electron-hole scattering dominated for both the intermediate and high temperature range. Analyses of the Shubnikov-de Haas data indicate the presence of 2-D carrier confinement consistent with energy subbands in GaAszSb1-z potential wells. Epilayers of GaAs1-xSbx (0.19<x<0.71), grown by MBE on semi-insulating GaAs with various substrate orientations, were studied by absorption measurements over the temperature range of 4-300 K. The various substrate orientations were chosen to induce different degrees of spontaneous atomic ordering. The temperature dependence of the energy gap (Eg) for each of these samples was modeled using three semi-empirical ...
Contributing Partner: UNT Libraries
Maxwell's Equations from Electrostatics and Einstein's Gravitational Field Equation from Newton's Universal Law of Gravitation Using Tensors

Maxwell's Equations from Electrostatics and Einstein's Gravitational Field Equation from Newton's Universal Law of Gravitation Using Tensors

Date: May 2004
Creator: Burns, Michael E.
Description: Maxwell's equations are obtained from Coulomb's Law using special relativity. For the derivation, tensor analysis is used, charge is assumed to be a conserved scalar, the Lorentz force is assumed to be a pure force, and the principle of superposition is assumed to hold. Einstein's gravitational field equation is obtained from Newton's universal law of gravitation. In order to proceed, the principle of least action for gravity is shown to be equivalent to the maximization of proper time along a geodesic. The conservation of energy and momentum is assumed, which, through the use of the Bianchi identity, results in Einstein's field equation.
Contributing Partner: UNT Libraries
Measurement of Dielectric Constant and Dipole Moment of Liquids

Measurement of Dielectric Constant and Dipole Moment of Liquids

Date: 1948
Creator: Fielder, Joseph T., Jr.
Description: A study of procedures and techniques of measuring dielectric constant and dipole moment of liquids.
Contributing Partner: UNT Libraries
Measurement of the Atomic-oxygen Concentration under Simulated Upper Atmosphere Conditions

Measurement of the Atomic-oxygen Concentration under Simulated Upper Atmosphere Conditions

Date: January 1970
Creator: Grable, Weliko C.
Description: This thesis describes an experimental technique for measuring the atomic-oxygen concentration under simulated upper atmosphere conditions.
Contributing Partner: UNT Libraries