You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Physics
An Electro- Magneto-static Field for Confinement of Charged Particle Beams and Plasmas

An Electro- Magneto-static Field for Confinement of Charged Particle Beams and Plasmas

Date: May 2014
Creator: Pacheco, Josè L.
Description: A system is presented that is capable of confining an ion beam or plasma within a region that is essentially free of applied fields. An Artificially Structured Boundary (ASB) produces a spatially periodic set of magnetic field cusps that provides charged particle confinement. Electrostatic plugging of the magnetic field cusps enhances confinement. An ASB that has a small spatial period, compared to the dimensions of a confined plasma, generates electro- magneto-static fields with a short range. An ASB-lined volume thus constructed creates an effectively field free region near its center. It is assumed that a non-neutral plasma confined within such a volume relaxes to a Maxwell-Boltzmann distribution. Space charge based confinement of a second species of charged particles is envisioned, where the second species is confined by the space charge of the first non-neutral plasma species. An electron plasma confined within an ASB-lined volume can potentially provide confinement of a positive ion beam or positive ion plasma. Experimental as well as computational results are presented in which a plasma or charged particle beam interact with the electro- magneto-static fields generated by an ASB. A theoretical model is analyzed and solved via self-consistent computational methods to determine the behavior and equilibrium ...
Contributing Partner: UNT Libraries
Electromagnetically Modulated Sonic Structures

Electromagnetically Modulated Sonic Structures

Access: Use of this item is restricted to the UNT Community.
Date: May 2014
Creator: Walker, Ezekiel Lee
Description: Phononic crystals are structures composed of periodically arranged scatterers in a background medium that affect the transmission of elastic waves. They have garnered much interest in recent years for their macro-scale properties that can be modulated by the micro-scale components. The elastic properties of the composite materials, the contrast in the elastic properties of the composite materials, and the material arrangement all directly affect how an elastic wave will behave as it propagates through the sonic structure. The behavior of an elastic wave in a periodic structure is revealed in its transmission bandstructure, and modification of any the elastic parameters will result in tuning of the band structure. In this dissertation, a phononic crystal with properties that can be modulated using electromagnetic radiation, and more specifically, radio-frequency (RF) light will be presented.
Contributing Partner: UNT Libraries
Electron Density and Collision Frequency Studies Using a Resonant Microwave Cavity as a Probe

Electron Density and Collision Frequency Studies Using a Resonant Microwave Cavity as a Probe

Date: May 1973
Creator: Freeman, Ronald Harold
Description: Electron densities and collision frequencies were obtained on a number of gases in a dc discharge at low pressures (0.70-2mm of Hg). These measurements were performed by microwave probing of a filament of the dc discharge placed coaxially in a resonant cavity operating in a TM₀₁₀ mode. The equipment and techniques for making the microwave measurements employing the resonant cavity are described. One of the main features of this investigation is the technique of differentiating the resonance signal of the loaded cavity in order to make accurate measurements of the resonant frequency and half-power point frequencies.
Contributing Partner: UNT Libraries
Electron-Ion Time-of-Flight Coincidence Measurements of K-K Electron Capture, Cross Sections for Nitrogen, Methane, Ethylene, Ethane, Carbon Dioxide and Argon (L-K) Targets

Electron-Ion Time-of-Flight Coincidence Measurements of K-K Electron Capture, Cross Sections for Nitrogen, Methane, Ethylene, Ethane, Carbon Dioxide and Argon (L-K) Targets

Date: May 1986
Creator: Toten, Arvel D.
Description: Protons with energies ranging from 0.4 to 2.0 MeV were used to measure K-shell vacancy production cross sections (oVK) for N_2, CH_4, C_2H_4, C_2H_6, and CO_2 gas targets under single collision conditions. An electron-ion time-of-flight coincidence technique was used to determind the ration of the K-K electron capture cross section, OECK, to the K-vacancy production cross section, oVK. These ratios were then combined with the measured values of oVK to extract the K-K electron capture cross sections. Measurements were also made for protons of the same energy range but with regard to L-shell vacancy production and L-K electron capture for Ar targets. In addition, K-K electron capture cross sections were measured for 1.0 to 2.0 Mev 42He^_ ions on CH_4.
Contributing Partner: UNT Libraries
Electron Spin Resonance Absorption in Benzophenone Phenylhydrazone Negative Ion

Electron Spin Resonance Absorption in Benzophenone Phenylhydrazone Negative Ion

Date: August 1969
Creator: Oral, Burhanettin
Description: This thesis reports an electron spin resonance absorption study of the hyperfine interaction between nuclei and a single "nearly-free" electron in dilute solutions of the benzophenone phenylhydrazone free radical in tetrahydrofuran.
Contributing Partner: UNT Libraries
Electron Transport in Bismuth at Liquid Helium Tempratures

Electron Transport in Bismuth at Liquid Helium Tempratures

Date: May 1964
Creator: Newell, James M.
Description: To obtain information on the band structure of bismuth, galvanomagnetic potentials were measured in a single crystal at liquid-helium and liquid-nitrogen temperatures. These measurements were analyzed for information on the different carriers, particularly for the existence of a high-mobility band of holes.
Contributing Partner: UNT Libraries
Electrostatic Effects in III-V Semiconductor Based Metal-optical Nanostructures

Electrostatic Effects in III-V Semiconductor Based Metal-optical Nanostructures

Access: Use of this item is restricted to the UNT Community.
Date: May 2012
Creator: Gryczynski, Karol Grzegorz
Description: The modification of the band edge or emission energy of semiconductor quantum well light emitters due to image charge induced phenomenon is an emerging field of study. This effect observed in quantum well light emitters is critical for all metal-optics based light emitters including plasmonics, or nanometallic electrode based light emitters. This dissertation presents, for the first time, a systematic study of the image charge effect on semiconductor–metal systems. the necessity of introducing the image charge interactions is demonstrated by experiments and mathematical methods for semiconductor-metal image charge interactions are introduced and developed.
Contributing Partner: UNT Libraries
Electrostatic Mechanism of Emission Enhancement in Hybrid Metal-semiconductor Light-emitting Heterostructures

Electrostatic Mechanism of Emission Enhancement in Hybrid Metal-semiconductor Light-emitting Heterostructures

Date: May 2012
Creator: Llopis, Antonio
Description: III-V nitrides have been put to use in a variety of applications including laser diodes for modern DVD devices and for solid-state white lighting. Plasmonics has come to the foreground over the past decade as a means for increasing the internal quantum efficiency (IQE) of devices through resonant interaction with surface plasmons which exist at metal/dielectric interfaces. Increases in emission intensity of an order of magnitude have been previously reported using silver thin-films on InGaN/GaN MQWs. the dependence on resonant interaction between the plasmons and the light emitter limits the applications of plasmonics for light emission. This dissertation presents a new non-resonant mechanism based on electrostatic interaction of carriers with induced image charges in a nearby metallic nanoparticle. Enhancement similar in strength to that of plasmonics is observed, without the restrictions imposed upon resonant interactions. in this work we demonstrate several key features of this new interaction, including intensity-dependent saturation, increase in the radiative recombination lifetime, and strongly inhomogeneous light emission. We also present a model for the interaction based on the aforementioned image charge interactions. Also discussed are results of work done in the course of this research resulting in the development of a novel technique for strain measurement ...
Contributing Partner: UNT Libraries
Emergence of Complexity from Synchronization and Cooperation

Emergence of Complexity from Synchronization and Cooperation

Date: May 2008
Creator: Geneston, Elvis L.
Description: The dynamical origin of complexity is an object of intense debate and, up to moment of writing this manuscript, no unified approach exists as to how it should be properly addressed. This research work adopts the perspective of complexity as characterized by the emergence of non-Poisson renewal processes. In particular I introduce two new complex system models, namely the two-state stochastic clocks and the integrate-and-fire stochastic neurons, and investigate its coupled dynamics in different network topologies. Based on the foundations of renewal theory, I show how complexity, as manifested by the occurrence of non-exponential distribution of events, emerges from the interaction of the units of the system. Conclusion is made on the work's applicability to explaining the dynamics of blinking nanocrystals, neuron interaction in the human brain, and synchronization processes in complex networks.
Contributing Partner: UNT Libraries
Energy Distribution of Sputtered Neutral Atoms from a Multilayer Target

Energy Distribution of Sputtered Neutral Atoms from a Multilayer Target

Date: August 2000
Creator: Bigelow, Alan W.
Description: Energy distribution measurements of sputtered neutral particles contribute to the general knowledge of sputtering, a common technique for surface analysis. In this work emphasis was placed on the measurement of energy distribution of sputtered neutral atoms from different depths. The liquid Ga-In eutectic alloy as a sample target for this study was ideal due to an extreme concentration ratio gradient between the top two monolayers. In pursuing this study, the method of sputter-initiated resonance ionization spectroscopy (SIRIS) was utilized. SIRIS employs a pulsed ion beam to initiate sputtering and tunable dye lasers for resonance ionization. Observation of the energy distribution was achieved with a position-sensitive detector. The principle behind the detector's energy resolution is time of flight (TOF) spectroscopy. For this specific detector, programmed time intervals between the sputtering pulse at the target and the ionizing laser pulse provided information leading to the energy distribution of the secondary neutral particles. This experiment contributes data for energy distributions of sputtered neutral particles to the experimental database, required by theoretical models and computer simulations for the sputtering phenomenon.
Contributing Partner: UNT Libraries