 Decoherence, Master Equation for Open Quantum Systems, and the Subordination Theory
 This thesis addresses the problem of a form of anomalous decoherence that sheds light into the spectroscopy of blinking quantum dots. The system studied is a twostate system, interacting with an external environment that has the effect of establishing an interaction between the two states, via a coherence generating coupling, called inphasing. The collisions with the environment produce also decoherence, named dephasing. Decoherence is interpreted as the entanglement of the coherent superposition of these two states with the environment. The joint action of inphasing and dephasing generates a Markov master equation statistically equivalent to a random walker jumping from one state to the other. This model can be used to describe intermittent fluorescence, as a sequence of "light on" and "light off" states. The experiments on blinking quantum dots indicate that the sojourn times are distributed with an inverse power law. Thus, a proposal to turn the model for Poisson fluorescence intermittency into a model for nonPoisson fluorescence intermittency is made. The collisionlike interaction of the twostate system with the environment is assumed to takes place at random times rather than at regular times. The time distance between one collision and the next is given by a distribution, called the subordination distribution. If the subordination distribution is exponential, a sequence of collisions yielding no persistence is turned into a sequence of "light on" and "light off" states with significant persistence. If the subordination function is an inverse power law the sequel of "light on" and "light off" states becomes equivalent to the experimental sequences. Different conditions are considered, ranging from predominant inphasing to predominant dephasing. When dephasing is predominant the sequel of "light on" and "light off" states in the time asymptotic limit becomes an inverse power law. If the predominant dephasing involves a time scale much larger than the minimum time scale accessible to the experimental observation, thereby generating persistence, the resulting distribution becomes a MittagLeffler function. If dephasing is predominant, in addition to the inverse power law distribution of "light off" and "light on" time duration, a strong correlation between "light on" and "light off" state is predicted. digital.library.unt.edu/ark:/67531/metadc4812/
 Design and Construction of a Positive RadioFrequency Ion Source for the Production of Negative Ions
 It is the purpose of this paper to present a detailed account of the design and construction of this positiveion source and associated equipment. digital.library.unt.edu/ark:/67531/metadc108015/
 Design and Testing of a Coincidence System
 This paper is concerned with the design, testing and performance of a coincidence system, the proposed North Texas State College accelerator. digital.library.unt.edu/ark:/67531/metadc108113/
 Design and Testing of a Corona Column and a Closed Gas Distribution System for a Tandem Van de Graaff Voltage Generator
 The purpose of this study had been to design and test a corona column and an insulating gas distribution system for a small tandem Van de Graaff. The intent of this paper is to describe the gas handling system and to compare experimentally the effects of corona electrode shape on the corona current carried between adjacent sections of the column. digital.library.unt.edu/ark:/67531/metadc163849/
 Design and Testing of a Positive Ion Accelerator and Necessary Vacuum System
 This thesis is a study of the design and testing of a positive ion accelerator and necessary vacuum system. digital.library.unt.edu/ark:/67531/metadc163830/
 Detection of the Resonant Vibration of the Cellular Membrane Using Femtosecond Laser Pulses
 An optical detection technique is developed to detect and measure the resonant vibration of the cellular membrane. Biological membranes are active components of living cells and play a complex and dynamic role in life processes. They are believed to have oscillation modes of frequencies in the range of 1 to 1000 GHz. To measure such a highfrequency vibration, a linear laser cavity is designed to produce a train of femtosecond pulses of adjustable repetition rate. The method is then directly applied to liposomes, "artificial membrane", stained with a liphophilic potential sensitive dye. The spectral behavior of a selection of potential sensitive dyes in the membrane is also studied. digital.library.unt.edu/ark:/67531/metadc331235/
 A Determination of the Bothe Depression Factor for Discs in Water
 The purpose of this work is to determine experimentally the depression of the neutron density by a detecting foil. The depression factor is known as the "selfshading" of the foil. digital.library.unt.edu/ark:/67531/metadc130255/
 A Determination of the Fine Structure Constant Using Precision Measurements of Helium Fine Structure
 Spectroscopic measurements of the helium atom are performed to high precision using an atomic beam apparatus and electrooptic laser techniques. These measurements, in addition to serving as a test of helium theory, also provide a new determination of the fine structure constant α. An apparatus was designed and built to overcome limitations encountered in a previous experiment. Not only did this allow an improved level of precision but also enabled new consistency checks, including an extremely useful measurement in 3He. I discuss the details of the experimental setup along with the major changes and improvements. A new value for the J = 0 to 2 fine structure interval in the 23P state of 4He is measured to be 31 908 131.25(30) kHz. The 300 Hz precision of this result represents an improvement over previous results by more than a factor of three. Combined with the latest theoretical calculations, this yields a new determination of α with better than 5 ppb uncertainty, α1 = 137.035 999 55(64). digital.library.unt.edu/ark:/67531/metadc31547/
 Deterministic Brownian Motion
 The goal of this thesis is to contribute to the ambitious program of the foundation of developing statistical physics using chaos. We build a deterministic model of Brownian motion and provide a microscpoic derivation of the FokkerPlanck equation. Since the Brownian motion of a particle is the result of the competing processes of diffusion and dissipation, we create a model where both diffusion and dissipation originate from the same deterministic mechanism  the deterministic interaction of that particle with its environment. We show that standard diffusion which is the basis of the FokkerPlanck equation rests on the Central Limit Theorem, and, consequently, on the possibility of deriving it from a deterministic process with a quickly decaying correlation function. The sensitive dependence on initial conditions, one of the defining properties of chaos insures this rapid decay. We carefully address the problem of deriving dissipation from the interaction of a particle with a fully deterministic nonlinear bath, that we term the booster. We show that the solution of this problem essentially rests on the linear response of a booster to an external perturbation. This raises a longstanding problem concerned with Kubo's Linear Response Theory and the strong criticism against it by van Kampen. Kubo's theory is based on a perturbation treatment of the Liouville equation, which, in turn, is expected to be totally equivalent to a firstorder perturbation treatment of single trajectories. Since the boosters are chaotic, and chaos is essential to generate diffusion, the single trajectories are highly unstable and do not respond linearly to weak external perturbation. We adopt chaotic maps as boosters of a Brownian particle, and therefore address the problem of the response of a chaotic booster to an external perturbation. We notice that a fully chaotic map is characterized by an invariant measure which is a continuous function of the control parameters of the map. Consequently if the external perturbation is made to act on a control parameter of the map, we show that the booster distribution undergoes slight modifications as an effect of the weak external perturbation, thereby leading to a linear response of the mean value of the perturbed variable of the booster. This approach to linear response completely bypasses the criticism of van Kampen. The joint use of these two phenomena, diffusion and friction stemming from the interaction of the Brownian particle with the same booster, makes the microscopic derivation of a FokkerPlanck equation and Brownian motion, possible. digital.library.unt.edu/ark:/67531/metadc279262/
 A DeuteriumDeuterium Type Neutron Source
 In view of the advantages of its type, the decision to construct a neutron source of the particle accelerator type was made. The purpose of this thesis is to survey the problems encountered in the construction of the source. digital.library.unt.edu/ark:/67531/metadc96980/
 The Dielectric Constant of Galvinoxyl
 The molecules in many substances are know to undergo at characteristic temperatures a change in their rotational freedom in the solid state, signifying either a change in structure of the material of the onset of limited rotation of the molecule about some symmetry axis. The purpose of this research was to determine from dielectric constant measurements over the 100°K420°K temperature range whether or not the organic free radical galvinoxyl and its diamagnetic parent molecule, dihydroxydiphenylmethane, undergo any such transitions. digital.library.unt.edu/ark:/67531/metadc163926/
 Dielectric Relaxation of Aqueous Solutions at Microwave Frequencies for 335 GHz. Using a Loaded Microwave Cavity Operating in the TM010 Mode
 The frequency dependence and temperature dependence of the complex dielectric constant of water is of great interest. The temperature dependence of the physical properties of water given in the literature, specific heat, thermal conductivity, electric conductivity, pH, etc. are compared to the a. c. (microwave) and d. c. conductivity of water with a variety of concentration of different substances such as HC1, NaCl, HaS04, etc. When each of these properties is plotted versus inverse absolute temperature, it can be seen that each sample shows "transition temperatures". In this work, Slater's perturbation equations for a resonant microwave cavity were used to analyze the experimental results for the microwave data. digital.library.unt.edu/ark:/67531/metadc279039/
 Dipole Moments of Diphenyl Compounds with Conjugated Double Bonds
 This thesis is a continuation of a study of molecular moments begun by Joseph T. Fielder. In his paper he discussed the theory and the equipment necessary for such a study. It is the purpose of this paper to set forth modifications of his equipment, to present data obtained with this modified equipment, and to interpret this data. digital.library.unt.edu/ark:/67531/metadc83668/
 Dipole Moments of Olefenic Diesters
 It is the purpose of this paper to present experimental data for the determination of the dielectric constant and the dipole moments for a series of olefenic diesters of the cis and trans configurations. digital.library.unt.edu/ark:/67531/metadc96944/
 Dipole Moments of Olefinic Esters
 It is the purpose of this thesis to investigate the applicability of the Debye equation to measurements dipole moments of polar compounds in dilute solutions of nonpolar solvents more fully than has been done by previous workers at this institution. digital.library.unt.edu/ark:/67531/metadc107828/
 Dispersion of the Nonlinear Refractive Index of CS₂ in the Spectral Range of 911 μm
 The nonlinear refractive index (n2) of room temperature liquid CS2 in the wavelength range of 9 to 11 micrometers is measured. A line tunable hybrid C02 TEA laser and amplifier system is used for the experiments. In these measurements the well known photoacoustic method is utilized to observe the onset of whole beam selffocusing. The photoacoustic signal in a CS2 cell, much longer than the confocal parameter, is monitored. The departure of the acoustic signal from linear growth marks the critical power for the onset of nonlinearity. It is experimentally verified that the phenomenon is power dependent as expected from selffocusing theory. The value of n2 is then calculated from the theoretical model of self focusing. Measurements of the onaxis irradiance transmitted through the nonlinear material as well as the measurements of beam distortion are used to verify the validity of the photoacoustic method. In all the measurements the onaxis intensity was smaller than the calculated threshold intensity for stimulated Brillouin scattering. The back reflection was monitored to make sure that stimulated Brillouin scattering was not playing a role in the phenomenon. digital.library.unt.edu/ark:/67531/metadc332448/
 Distribution of Nighttime Fregion Molecular Ion Concentrations and 6300 Å Nightglow Morphology
 The purpose of this study is twofold. The first is to determine the dependence of the molecular ion profiles on the various ionospheric and atmospheric parameters that affect their distributions. The second is to demonstrate the correlation of specific ionospheric parameters with 6300 Å nightglow intensity during periods of magnetically quiet and disturbed conditions. digital.library.unt.edu/ark:/67531/metadc278620/
 The Diurnal Variation of Cosmic Radiation
 The primary purpose of this investigation was to study the diurnal variation of cosmicray intensity. digital.library.unt.edu/ark:/67531/metadc163872/
 A Dynamic and Thermodynamic Approach to Complexity.
 The problem of establishing the correct approach to complexity is a very hot and crucial issue to which this dissertation gives some contributions. This dissertation considers two main possibilities, one, advocated by Tsallis and coworkers, setting the foundation of complexity on a generalized, nonextensive , form of thermodynamics, and another, proposed by the UNT Center for Nonlinear Science, on complexity as a new condition that, for physical systems, would be equivalent to a state of matter intermediate between dynamics and thermodynamics. In the first part of this dissertation, the concept of KolmogorovSinai entropy is introduced. The Pesin theorem is generalized in the formalism of Tsallis nonextensive thermodynamics. This generalized form of Pesin theorem is used in the study of two major classes of problems, whose prototypes are given by the Manneville and the logistic map respectively. The results of these studies convince us that the approach to complexity must be made along lines different from those of the nonextensive thermodynamics. We have been convinced that the Lévy walk can be used as a prototype model of complexity, as a condition of balance between order and randomness that yields new phenomena such as aging, and multifractality. We reach the conclusions that these properties must be studied within a dynamic rather than thermodynamic perspective. The second part focuses on the study of the heart beating problem using a dynamic model, the socalled memory beyond memory, based on the Lévy walker model. It is proved that the memory beyond memory effect is more obvious in the healthy heart beating sequence. The concepts of fractal, multifractal, wavelet transformation and wavelet transform maximum modulus (WTMM) method are introduced. Artificial time sequences are generated by the memory beyond memory model to mimic the heart beating sequence. Using WTMM method, the multifratal singular spectrums of the sequences are calculated. It is clear that the sequence with strong memory beyond memory effect has broader singular spectrum.200308 digital.library.unt.edu/ark:/67531/metadc4276/
 The Dynamic Foundation of Fractal Operators.
 The fractal operators discussed in this dissertation are introduced in the form originally proposed in an earlier book of the candidate, which proves to be very convenient for physicists, due to its heuristic and intuitive nature. This dissertation proves that these fractal operators are the most convenient tools to address a number of problems in condensed matter, in accordance with the point of view of many other authors, and with the earlier book of the candidate. The microscopic foundation of the fractal calculus on the basis of either classical or quantum mechanics is still unknown, and the second part of this dissertation aims at this important task. This dissertation proves that the adoption of a master equation approach, and so of probabilistic as well as dynamical argument yields a satisfactory solution of the problem, as shown in a work by the candidate already published. At the same time, this dissertation shows that the foundation of Levy statistics is compatible with ordinary statistical mechanics and thermodynamics. The problem of the connection with the KolmogorovSinai entropy is a delicate problem that, however, can be successfully solved. The derivation from a microscopic Liouvillelike approach based on densities, however, is shown to be impossible. This dissertation, in fact, establishes the existence of a striking conflict between densities and trajectories. The third part of this dissertation is devoted to establishing the consequences of the conflict between trajectories and densities in quantum mechanics, and triggers a search for the experimental assessment of spontaneous wavefunction collapses. The research work of this dissertation has been the object of several papers and two books. digital.library.unt.edu/ark:/67531/metadc4235/
 Dynamical Friction Coefficients for Plasmas Exhibiting NonSpherical Electron Velocity Distributions
 This investigation is designed to find the net rate of decrease in the component of velocity parallel to the original direction of motion of a proton moving through an electron gas exhibiting a nonspherical velocity distribution. digital.library.unt.edu/ark:/67531/metadc130480/
 EEG, Alpha Waves and Coherence
 This thesis addresses some theoretical issues generated by the results of recent analysis of EEG time series proving the brain dynamics are driven by abrupt changes making them depart from the ordinary Poisson condition. These changes are renewal, unpredictable and nonergodic. We refer to them as crucial events. How is it possible that this form of randomness be compatible with the generation of waves, for instance alpha waves, whose observation seems to suggest the opposite view the brain is characterized by surprisingly extended coherence? To shed light into this apparently irretrievable contradiction we propose a model based on a generalized form of Langevin equation under the influence of a periodic stimulus. We assume that there exist two different forms of time, a subjective form compatible with Poisson statistical physical and an objective form that is accessible to experimental observation. The transition from the former to the latter form is determined by the brain dynamics interpreted as emerging from the cooperative interaction among many units that, in the absence of cooperation would generate Poisson fluctuations. We call natural time the brain internal time and we make the assumption that in the natural time representation the time evolution of the EEG variable y(t) is determined by a Langevin equation perturbed by a periodic process that in this time representation is hardly distinguishable from an erratic process. We show that the representation of this random process in the experimental time scale is characterized by a surprisingly extended coherence. We show that this model generates a sequence of damped oscillations with a time behavior that is remarkably similar to that derived from the analysis of real EEG's. The main result of this research work is that the existence of crucial events is not incompatible with the alpha wave coherence. In addition to this important result, we find another result that may help our group, or any other research group working on the analysis of brain's dynamics, to prove or to disprove the existence of crucial events. We study the diffusion process generated by fluctuations emerging from the same model after filtering out the alpha coherence, and we study the recursion to the origin. We study the survival probability of this process, namely the probability that up to a given time no recrossing of the origin occurs. We find that this is an inverse power law with a power that depends on whether or not crucial events exist. digital.library.unt.edu/ark:/67531/metadc28389/
 The Effect of Average Grain Size on Polycrystalline Diamond Films
 The work function of hydrogenterminated, polycrystalline diamond was studied using ultraviolet photoelectron spectroscopy. Polycrystalline diamond films were deposited onto molybdenum substrates by electrophoresis for grain sizes ranging from 0.3 to 108 microns. The work function and electron affinity were measured using 21.2 eV photons from a helium plasma source. The films were characterized by xray photoelectron spectroscopy to determine elemental composition and the sp2/sp3 carbon fraction. The percentage of (111) diamond was determined by xray diffraction, and scanning electron microscopy was performed to determine average grain size. The measured work function has a maximum of 5.1 eV at 0.3 microns, and decreases to 3.2 eV at approximately 4 microns. Then the work function increases with increasing grain size to 4.0 eV at 15 microns and then asymptotically approaches the 4.8 eV work function of single crystal diamond at 108 microns. These results are consistent with a 3component model in which the work function is controlled by singlecrystal (111) diamond at larger grain sizes, graphitic carbon at smaller grain sizes, and by the electron affinity for the intervening grain sizes. digital.library.unt.edu/ark:/67531/metadc3164/
 Effect of Sample Geometry on Magnetomorphic Oscillations in the Hall Effect in Cadium at LiquidHelium Temperatures
 This thesis presents observations on sizeeffect oscillations in the Hall effect in an oriented single crystal of highly pure cadmium at liquidhelium temperatures. All measurements were made in transverse magnetic field. digital.library.unt.edu/ark:/67531/metadc130799/
 The Effects of Cesium Deposition and Gas Exposure on the Field Emission Properties of Single Wall and Multiwall Carbon Nanotubes
 The effects of Cs deposition on the field emission (FE) properties of singlewalled carbon nanotube (SWNT) bundles were studied. In addition, a comparative study was made on the effects of O2, Ar and H2 gases on the field emission properties of SWNT bundles and multiwall carbon nanotubes (MWNTs). We observed that Cs deposition decreases the turnon field for FE by a factor of 2.1  2.9 and increases the FE current by 6 orders of magnitude. After Cs deposition, the FE current versus voltage (IV) curves showed nonFowlerNordheim behavior at large currents consistent with tunneling from adsorbate states. At lower currents, the ratio of the slope of the FE IV curves before and after Cs deposition was approximately 2.1. Exposure to N2 does not decrease the FE current, while exposure to O2 decreases the FE current. Our results show that cesiated SWNT bundles have great potential as economical and reliable vacuum electron sources. We find that H2 and Ar gases do not significantly affect the FE properties of SWNTs or MWNTs. O2 temporarily reduces the FE current and increases the turnon voltage of SWNTs. Full recovery of these properties occurred after operation in UHV. The higher operating voltages in an O2 environment caused a permanent decrease of FE current and increase in turnon field of MWNTs. The ratios of the slopes before and after O2 exposure were approximately 1.04 and 0.82 for SWNTs and MWNTs, respectively. SWNTs compared to MWNTs would appear to make more economical and reliable vacuum electron sources. digital.library.unt.edu/ark:/67531/metadc3110/
 Effects of Dissipation on Propagation of Surface Electromagnetic and Acoustic Waves
 With the recent emergence of the field of metamaterials, the study of subwavelength propagation of plane waves and the dissipation of their energy either in the form of Joule losses in the case of electomagnetic waves or in the form of viscous dissipation in the case of acoustic waves in different interfaced media assumes great importance. with this motivation, I have worked on problems in two different areas, viz., plasmonics and surface acoustics. the first part (chapters 2 & 3) of the dissertation deals with the emerging field of plasmonics. Researchers have come up with various designs in an efort to fabricate efficient plasmonic waveguides capable of guiding plasmonic signals. However, the inherent dissipation in the form of Joule losses limits efficient usage of surface plasmon signal. a dielectricmetal¬dielectric planar structure is one of the most practical plasmonic structures that can serve as an efficient waveguide to guide electromagnetic waves along the metaldielectric boundary. I present here a theoretical study of propagation of surface plasmons along a symmetric dielectricmetaldielectric structure and show how proper orientation of the optical axis of the anisotropic substrate enhances the propagation length. an equation for propagation length is derived in a wide range of frequencies. I also show how the frequency of coupled surface plasmons can be modulated by changing the thickness of the metal film. I propose a KronigPenny model for the plasmonic crystal, which in the long wavelength limit, may serve as a homogeneous dielectric substrate with high anisotropy which do not exist for natural optical crystals. in the second part (chapters 4 & 5) of the dissertation, I discuss an interesting effect of extraordinary absorption of acoustic energy due to resonant excitation of Rayleigh waves in a narrow water channel clad between two metal plates. Starting from the elastic properties of the metal plates, I derive a dispersion equation that gives resonant frequencies, which coincide with those observed in the experiment that was performed by Wave Phenomena Group at Polytechnic University of Valencia, Spain. Two eigenmodes with different polarizations and phase velocities are obtained from the dispersion equation. at certain critical aperture of the channel, an interesting cutoff effect, which is unusual for an acoustic wave, is observed for one of the eigenmodes with symmetric distribution of the pressure field. the theoretical prediction of the coupling and synchronization of Rayleigh waves strongly supports the experimentally measured shift of the resonant frequencies in the transmission spectra with channel aperture. the observed high level of absorption may find applications in designing metamaterial acoustic absorbers. digital.library.unt.edu/ark:/67531/metadc115126/
 The Effects of Lead Placement and Sample Shape in the Measurement of Electrical Resistivity
 This thesis is a study of the effects of lead placement and sample shape in the measurement of electrical resistivity. digital.library.unt.edu/ark:/67531/metadc131303/
 Effects of Quantum Coherence and Interference

Access: Use of this item is restricted to the UNT Community.
Quantum coherence and interference (QCI) is a phenomenon that takes place in all multilevel atomic systems interacting with multiple lasers. In this work QCI is used to create several interesting effects like lasing without inversion (LWI), controlling group velocity of light to extreme values, controlling the direction of propagation through nonlinear phase matching condition and for controlling the correlations in field fluctuations. Controlling group velocity of light is very interesting because of many novel applications it can offer. One of the unsolved problems in this area is to achieve a slow and fast light which can be tuned continuously as a function of frequency. We describe a method for creation of tunable slow and fast light by controlling intensity of incident laser fields using QCI effects. Lasers are not new to the modern world but an extreme ultraviolet laser or a xray laser is definitely one of the most desirable technologies today. Using QCI, we describe a method to realize lasing at high frequencies by creating lasing without inversion. Role of QCI in creating correlations and anticorrelations, which are generated by vacuum fluctuations, in a three level lambda system coupled to two strong fields is discussed. digital.library.unt.edu/ark:/67531/metadc500094/  The Effects of Residual Gases on the Field Emission Properties of ZnO, GaN, ZnS Nanostructures, and the Effects of Light on the Resistivity of Graphene
 In this dissertation, I present that at a vacuum of 3×107 Torr, residual O2, CO2, H2 and Ar exposure do not significantly degrade the field emission (FE) properties of ZnO nanorods, but N2 exposure significantly does. I propose that this could be due to the dissociation of N2 into atomic nitrogen species and the reaction of such species with ZnO. I also present the effects of O2, CO2, H2O, N2, H2, and Ar residual gas exposure on the FE properties of GaN and ZnS nanostructure. A brief review of growth of ZnO, GaN and ZnS is provided. In addition, Cs deposition on GaN nanostructures at ultrahigh vacuum results in 30% decrease in turnon voltage and 60% in work function. The improvement in FE properties could be due to a Csinduced spacecharge layer at the surface that reduces the barrier for FE and lowers the work function. I describe a new phenomenon, in which the resistivity of CVDgrown graphene increases to a higher saturated value under light exposure, and depends on the wavelength of the light—the shorter the wavelength, the higher the resistivity. Firstprinciple calculations and theoretical analysis based on density functional theory show that (1) a water molecule close to a graphene defect is easier to be split than that of the case of no defect existing and (2) there are a series of metastable partially disassociated states for an interfacial water molecule. Calculated disassociation energies are from 2.5 eV to 4.6 eV, that match the experimental observation range of light wavelength from visible to 254 nm UV light under which the resistivity of CVDgrown graphene is increased. digital.library.unt.edu/ark:/67531/metadc500202/
 Electrical Conduction Mechanisms in the Disordered Material System Ptype Hydrogenated Amorphous Silicon
 The electrical and optical properties of boron doped hydrogenated amorphous silicon thin films (aSi) were investigated to determine the effect of boron and hydrogen incorporation on carrier transport. The aSi thin films were grown by plasma enhanced chemical vapor deposition (PECVD) at various boron concentrations, hydrogen dilutions, and at differing growth temperatures. The temperature dependent conductivity generally follows the hopping conduction model. Above a critical temperature, the dominant conduction mechanism is Mott variable range hopping conductivity (MVRH), where p = ¼, and the carrier hopping depends on energy. However, at lower temperatures, the coulomb interaction between charge carriers becomes important and EfrosShklosvkii variable hopping (ESVRH) conduction, where p=1/2, must be included to describe the total conductivity. To correlate changes in electrical conductivity to changes in the local crystalline order, the transverse optical (TO) and transverse acoustic (TA) modes of the Raman spectra were studied to relate changes in short and midrange order to the effects of growth temperature, boron, and hydrogen incorporation. With an increase of hydrogen and/or growth temperature, both short and midrange order improve, whereas the addition of boron results in the degradation of short range order. It is seen that there is a direct correlation between the electrical conductivity and changes in the short and midrange order resulting from the passivation of defects by hydrogen and the creation of trap states by boron. This work was done under the ARO grant W911NF1010410, William W. Clark Program Manager. The samples were provided by L3 Communications. digital.library.unt.edu/ark:/67531/metadc700106/
 Electrical Conductivity in Thin Films
 This thesis deals with electrical conductivity in thin films. Classical and quantum size effects in conductivity are discussed including some experimental evidence of quantum size effects. The component conductivity along the applied electric field of a thin film in a transverse magnetic field is developed in a density matrix method. digital.library.unt.edu/ark:/67531/metadc164055/
 An Electro Magnetostatic Field for Confinement of Charged Particle Beams and Plasmas
 A system is presented that is capable of confining an ion beam or plasma within a region that is essentially free of applied fields. An Artificially Structured Boundary (ASB) produces a spatially periodic set of magnetic field cusps that provides charged particle confinement. Electrostatic plugging of the magnetic field cusps enhances confinement. An ASB that has a small spatial period, compared to the dimensions of a confined plasma, generates electro magnetostatic fields with a short range. An ASBlined volume thus constructed creates an effectively field free region near its center. It is assumed that a nonneutral plasma confined within such a volume relaxes to a MaxwellBoltzmann distribution. Space charge based confinement of a second species of charged particles is envisioned, where the second species is confined by the space charge of the first nonneutral plasma species. An electron plasma confined within an ASBlined volume can potentially provide confinement of a positive ion beam or positive ion plasma. Experimental as well as computational results are presented in which a plasma or charged particle beam interact with the electro magnetostatic fields generated by an ASB. A theoretical model is analyzed and solved via selfconsistent computational methods to determine the behavior and equilibrium conditions of a relaxed plasma. The equilibrium conditions of a relaxed two species plasma are also computed. In such a scenario, space charge based electrostatic confinement is predicted to occur where a second plasma species is confined by the space charge of the first plasma species. An experimental apparatus with cylindrical symmetry that has its interior surface lined with an ASB is presented. This system was developed by using a simulation of the electro magnetostatic fields present within the trap to guide mechanical design. The construction of the full experimental apparatus is discussed. Experimental results that show the characteristics of electron beam transmission through the experimental apparatus are presented. A description of the experimental hardware and software used for trapping a charged particle beam or plasma is also presented. digital.library.unt.edu/ark:/67531/metadc500001/
 Electromagnetically Modulated Sonic Structures

Access: Use of this item is restricted to the UNT Community.
Phononic crystals are structures composed of periodically arranged scatterers in a background medium that affect the transmission of elastic waves. They have garnered much interest in recent years for their macroscale properties that can be modulated by the microscale components. The elastic properties of the composite materials, the contrast in the elastic properties of the composite materials, and the material arrangement all directly affect how an elastic wave will behave as it propagates through the sonic structure. The behavior of an elastic wave in a periodic structure is revealed in its transmission bandstructure, and modification of any the elastic parameters will result in tuning of the band structure. In this dissertation, a phononic crystal with properties that can be modulated using electromagnetic radiation, and more specifically, radiofrequency (RF) light will be presented. digital.library.unt.edu/ark:/67531/metadc799496/  Electron Density and Collision Frequency Studies Using a Resonant Microwave Cavity as a Probe
 Electron densities and collision frequencies were obtained on a number of gases in a dc discharge at low pressures (0.702mm of Hg). These measurements were performed by microwave probing of a filament of the dc discharge placed coaxially in a resonant cavity operating in a TM₀₁₀ mode. The equipment and techniques for making the microwave measurements employing the resonant cavity are described. One of the main features of this investigation is the technique of differentiating the resonance signal of the loaded cavity in order to make accurate measurements of the resonant frequency and halfpower point frequencies. digital.library.unt.edu/ark:/67531/metadc279091/
 ElectronIon TimeofFlight Coincidence Measurements of KK Electron Capture, Cross Sections for Nitrogen, Methane, Ethylene, Ethane, Carbon Dioxide and Argon (LK) Targets
 Protons with energies ranging from 0.4 to 2.0 MeV were used to measure Kshell vacancy production cross sections (oVK) for N_2, CH_4, C_2H_4, C_2H_6, and CO_2 gas targets under single collision conditions. An electronion timeofflight coincidence technique was used to determind the ration of the KK electron capture cross section, OECK, to the Kvacancy production cross section, oVK. These ratios were then combined with the measured values of oVK to extract the KK electron capture cross sections. Measurements were also made for protons of the same energy range but with regard to Lshell vacancy production and LK electron capture for Ar targets. In addition, KK electron capture cross sections were measured for 1.0 to 2.0 Mev 42He^_ ions on CH_4. digital.library.unt.edu/ark:/67531/metadc331079/
 Electron Spin Resonance Absorption in Benzophenone Phenylhydrazone Negative Ion
 This thesis reports an electron spin resonance absorption study of the hyperfine interaction between nuclei and a single "nearlyfree" electron in dilute solutions of the benzophenone phenylhydrazone free radical in tetrahydrofuran. digital.library.unt.edu/ark:/67531/metadc131161/
 Electron Transport in Bismuth at Liquid Helium Tempratures
 To obtain information on the band structure of bismuth, galvanomagnetic potentials were measured in a single crystal at liquidhelium and liquidnitrogen temperatures. These measurements were analyzed for information on the different carriers, particularly for the existence of a highmobility band of holes. digital.library.unt.edu/ark:/67531/metadc130512/
 Electrostatic Effects in IIIV Semiconductor Based Metaloptical Nanostructures

Access: Use of this item is restricted to the UNT Community.
The modification of the band edge or emission energy of semiconductor quantum well light emitters due to image charge induced phenomenon is an emerging field of study. This effect observed in quantum well light emitters is critical for all metaloptics based light emitters including plasmonics, or nanometallic electrode based light emitters. This dissertation presents, for the first time, a systematic study of the image charge effect on semiconductor–metal systems. the necessity of introducing the image charge interactions is demonstrated by experiments and mathematical methods for semiconductormetal image charge interactions are introduced and developed. digital.library.unt.edu/ark:/67531/metadc115090/  Electrostatic Mechanism of Emission Enhancement in Hybrid Metalsemiconductor Lightemitting Heterostructures
 IIIV nitrides have been put to use in a variety of applications including laser diodes for modern DVD devices and for solidstate white lighting. Plasmonics has come to the foreground over the past decade as a means for increasing the internal quantum efficiency (IQE) of devices through resonant interaction with surface plasmons which exist at metal/dielectric interfaces. Increases in emission intensity of an order of magnitude have been previously reported using silver thinfilms on InGaN/GaN MQWs. the dependence on resonant interaction between the plasmons and the light emitter limits the applications of plasmonics for light emission. This dissertation presents a new nonresonant mechanism based on electrostatic interaction of carriers with induced image charges in a nearby metallic nanoparticle. Enhancement similar in strength to that of plasmonics is observed, without the restrictions imposed upon resonant interactions. in this work we demonstrate several key features of this new interaction, including intensitydependent saturation, increase in the radiative recombination lifetime, and strongly inhomogeneous light emission. We also present a model for the interaction based on the aforementioned image charge interactions. Also discussed are results of work done in the course of this research resulting in the development of a novel technique for strain measurement in lightemitting structures. This technique makes use of a spectral fitting model to extract information about electronphonon interactions in the sample which can then be related to strain using theoretical modeling. digital.library.unt.edu/ark:/67531/metadc115113/
 Emergence of Complexity from Synchronization and Cooperation
 The dynamical origin of complexity is an object of intense debate and, up to moment of writing this manuscript, no unified approach exists as to how it should be properly addressed. This research work adopts the perspective of complexity as characterized by the emergence of nonPoisson renewal processes. In particular I introduce two new complex system models, namely the twostate stochastic clocks and the integrateandfire stochastic neurons, and investigate its coupled dynamics in different network topologies. Based on the foundations of renewal theory, I show how complexity, as manifested by the occurrence of nonexponential distribution of events, emerges from the interaction of the units of the system. Conclusion is made on the work's applicability to explaining the dynamics of blinking nanocrystals, neuron interaction in the human brain, and synchronization processes in complex networks. digital.library.unt.edu/ark:/67531/metadc6107/
 Energy Distribution of Sputtered Neutral Atoms from a Multilayer Target
 Energy distribution measurements of sputtered neutral particles contribute to the general knowledge of sputtering, a common technique for surface analysis. In this work emphasis was placed on the measurement of energy distribution of sputtered neutral atoms from different depths. The liquid GaIn eutectic alloy as a sample target for this study was ideal due to an extreme concentration ratio gradient between the top two monolayers. In pursuing this study, the method of sputterinitiated resonance ionization spectroscopy (SIRIS) was utilized. SIRIS employs a pulsed ion beam to initiate sputtering and tunable dye lasers for resonance ionization. Observation of the energy distribution was achieved with a positionsensitive detector. The principle behind the detector's energy resolution is time of flight (TOF) spectroscopy. For this specific detector, programmed time intervals between the sputtering pulse at the target and the ionizing laser pulse provided information leading to the energy distribution of the secondary neutral particles. This experiment contributes data for energy distributions of sputtered neutral particles to the experimental database, required by theoretical models and computer simulations for the sputtering phenomenon. digital.library.unt.edu/ark:/67531/metadc2657/
 Energy Losses of Protons Projected through a Plasma Due to Collisions with Electrons of the Plasma for a Variety of NonMaxwellian Electron Velocity Distributions
 The purpose of this thesis is to study energy losses suffered by protons in traversing a plasma through collision with the electrons of the plasma. For these electrons a variety of nonMaxwellian velocity distributions are assumed. digital.library.unt.edu/ark:/67531/metadc130468/
 Enhancement of Mechanical, Thermal Stability, and Tribological Properties by Addition of Functionalized Reduced Graphene Oxide in Epoxy
 The effects of octadecylaminefunctionalized reduced graphene oxide (FRGO) on the frictional and wear properties of diglycidylether of bisphenolA (DGEBA) epoxy are studied using a pinondisk tribometer. It was observed that the addition of FRGO significantly improves the tribological, mechanical, and thermal properties of epoxy matrix. Graphene oxide (GO) was functionalized with octadecylamine (ODA), and then reduction of oxygencontaining functional groups was carried out using hydrazine monohydrate. The Raman and xray photoelectron spectroscopy studies confirm significant reduction in oxygencontaining functional groups and formation of ODA functionalized reduced GO. The nanocomposites are prepared by adding 0.1, 0.2, 0.5 and 1.0 wt % of FRGO to the epoxy. The addition of FRGO increases by more than an order of magnitude the sliding distance during which the dynamic friction is ≤ 0.1. After this distance, the friction sharply increases to the range of 0.4  0.5. We explain the increase in sliding distance during which the friction is low by formation of a transfer film from the nanocomposite to the counterface. The wear rates in the low and high friction regimes are approximately 1.5 x 104 mm3/N·m and 5.5 x 104 mm3/N·m, respectively. The nanocomposites exhibit a 74 % increase in Young’s modulus with 0.5 wt. % of FRGO, and an increase in glass transition and thermal degradation temperatures. digital.library.unt.edu/ark:/67531/metadc699889/
 An entropic approach to the analysis of time series.
 Statistical analysis of time series. With compelling arguments we show that the Diffusion Entropy Analysis (DEA) is the only method of the literature of the Science of Complexity that correctly determines the scaling hidden within a time series reflecting a Complex Process. The time series is thought of as a source of fluctuations, and the DEA is based on the Shannon entropy of the diffusion process generated by these fluctuations. All traditional methods of scaling analysis, instead, are based on the variance of this diffusion process. The variance methods detect the real scaling only if the Gaussian assumption holds true. We call H the scaling exponent detected by the variance methods and d the real scaling exponent. If the time series is characterized by Fractional Brownian Motion, we have H¹d and the scaling can be safely determined, in this case, by using the variance methods. If, on the contrary, the time series is characterized, for example, by Lévy statistics, H ¹ d and the variance methods cannot be used to detect the true scaling. Lévy walk yields the relation d=1/(32H). In the case of Lévy flights, the variance diverges and the exponent H cannot be determined, whereas the scaling d exists and can be established by using the DEA. Therefore, only the joint use of two different scaling analysis methods, the variance scaling analysis and the DEA, can assess the real nature, Gauss or Lévy or something else, of a time series. Moreover, the DEA determines the information content, under the form of Shannon entropy, or of any other convenient entopic indicator, at each time step of the process that, given a sufficiently large number of data, is expected to become diffusion with scaling. This makes it possible to study the regime of transition from dynamics to thermodynamics, nonstationary regimes, and the saturation regime as well. First of all, the efficiency of the DEA is proved with theoretical arguments and with numerical work on artificial sequences. Then we apply the DEA to three different sets of real data, Genome sequences, hard xray solar flare waiting times and sequences of sociological interest. In all these cases the DEA makes new properties, overlooked by the standard method of analysis, emerge. digital.library.unt.edu/ark:/67531/metadc3033/
 Evolution of Vacancy Supersaturations in MeV Si Implanted Silicon
 Highenergy Si implantation into silicon creates a net defect distribution that is characterized by an excess of interstitials near the projected range and a simultaneous excess of vacancies closer to the surface. This defect distribution is due to the spatial separation between the distributions of interstitials and vacancies created by the forward momentum transferred from the implanted ion to the lattice atom. This dissertation investigates the evolution of the nearsurface vacancy excess in MeV Siimplanted silicon both during implantation and postimplant annealing. Although previous investigations have identified a vacancy excess in MeVimplanted silicon, the investigations presented in this dissertation are unique in that they are designed to correlate the freevacancy supersaturation with the vacancies in clusters. Freevacancy (and interstitial) supersaturations were measured with Sb (B) dopant diffusion markers. Vacancies in clusters were profiled by Au labeling; a new technique based on the observation that Au atoms trap in the presence of openvolume defects. The experiments described in this dissertation are also unique in that they were designed to isolate the deep interstitial excess from interacting with the much shallower vacancy excess during postimplant thermal processing. digital.library.unt.edu/ark:/67531/metadc277663/
 Experimental Determination of the Scattering Crosssection of Ogives and Prolate Spheroids at Microwave Frequencies
 Because of the great difficulty of obtaining exact numerical values of crosssection, and because of the inherent uncertainties in interpreting and evaluating the approximate methods, accurate experimental crosssection data would be extremely useful to the radar engineer. It was with this purpose in mind that the present longrange research program in microwave scattering was undertaken. Of immediate interest were the scattering properties of the prolate spheroid, the ogive (formed by rotating the minor segment of a circle around the chord), and, for comparison, the long cylinder. digital.library.unt.edu/ark:/67531/metadc107875/
 An Experimental Study of Collision Broadening of some Excited Rotational States of the Bending Vibration of Methyl Cyanide
 A double modulation microwave spectrometer is used to evaluate the linewidth parameters for some excited rotational components in the bending vibration v_8 of 13CH3 13C 15N and 13CH3C15N isotopomers of methyl cyanide. The linewidth parameters for selfbroadening of the ΔJ=2←1 rotational components for the ground v_8 , 1v_8, and the 2v_8 vibrations were determined over a pressure range of 1 to 13 mtorr and at a temperature of 300 K. The double modulation technique is used to explore the high eighth derivative of the line shape profile of the spectral line. This technique proved to give good signaltonoise ratios and enabled the recovery of weak signals. An experimental method is developed to correct for source modulation broadening. The tests of the ratios of the two inner peak's separation of the eighth derivative of the line showed that they were up to 95% similar to those for a Lorentzian line shape function. The line shapes were assumed to be Lorentzian for the theoretical analysis of the derivative profiles and comparisons were made between experiment and theory on this basis. Dipole moments for vibrationally excited states were calculated from linewidth parameters and show systematic decrease with the increase of excitation. Impact parameters were calculated using the "hard sphere" model of the kinetic theory of gases. The results were many times larger than the size of the molecule itself. This suggests that the dominant interaction is a long range dipoledipole force interaction. digital.library.unt.edu/ark:/67531/metadc278369/
 Experimental Synchronization of Chaotic Attractors Using Control
 The focus of this thesis is to theoretically and experimentally investigate two new schemes of synchronizing chaotic attractors using chaotically operating diode resonators. The first method, called synchronization using control, is shown for the first time to experimentally synchronize dynamical systems. This method is an economical scheme which can be viably applied to low dimensional dynamical systems. The other, unidirectional coupling, is a straightforward means of synchronization which can be implemented in fast dynamical systems where timing is critical. Techniques developed in this work are of fundamental importance for future problems regarding high dimensional chaotic dynamical systems or arrays of mutually linked chaotically operating elements. digital.library.unt.edu/ark:/67531/metadc278971/
 Exploration of hierarchical leadership and connectivity in neural networks in vitro.
 Living neural networks are capable of processing information much faster than a modern computer, despite running at significantly lower clock speeds. Therefore, understanding the mechanisms neural networks utilize is an issue of substantial importance. Neuronal interaction dynamics were studied using histiotypic networks growing on microelectrode arrays in vitro. Hierarchical relationships were explored using bursting (when many neurons fire in a short time frame) dynamics, pairwise neuronal activation, and information theoretic measures. Together, these methods reveal that global network activity results from ignition by a small group of burst leader neurons, which form a primary circuit that is responsible for initiating most networkwide burst events. Phase delays between leaders and followers reveal information about the nature of the connection between the two. Physical distance from a burst leader appears to be an important factor in follower response dynamics. Information theory reveals that mutual information between neuronal pairs is also a function of physical distance. Activation relationships in developing networks were studied and plating density was found to play an important role in network connectivity development. These measures provide unique views of network connectivity and hierarchical relationship in vitro which should be included in biologically meaningful models of neural networks. digital.library.unt.edu/ark:/67531/metadc9775/
 Expulsion of Carriers from the DoubleBarrier Quantum Well and Investigation of Its Spectral and Transport Consequences
 In this work I investigate the expulsion of carriers from nanostructures using the doublebarrier quantum well (DBQW) as an example and discuss manifestations of this effect in the spectrum of the DBQW in absence of bias, and in the tunneling current in presence of bias. Assuming equality of the Fermi energy in all regions of the considered system, I compute the relative density of carriers localized in the DBQW and conclude that a fraction of carriers is expelled from this nanostructure. digital.library.unt.edu/ark:/67531/metadc277697/