You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Physics
The dynamic foundation of fractal operators.

The dynamic foundation of fractal operators.

Date: May 2003
Creator: Bologna, Mauro
Description: The fractal operators discussed in this dissertation are introduced in the form originally proposed in an earlier book of the candidate, which proves to be very convenient for physicists, due to its heuristic and intuitive nature. This dissertation proves that these fractal operators are the most convenient tools to address a number of problems in condensed matter, in accordance with the point of view of many other authors, and with the earlier book of the candidate. The microscopic foundation of the fractal calculus on the basis of either classical or quantum mechanics is still unknown, and the second part of this dissertation aims at this important task. This dissertation proves that the adoption of a master equation approach, and so of probabilistic as well as dynamical argument yields a satisfactory solution of the problem, as shown in a work by the candidate already published. At the same time, this dissertation shows that the foundation of Levy statistics is compatible with ordinary statistical mechanics and thermodynamics. The problem of the connection with the Kolmogorov-Sinai entropy is a delicate problem that, however, can be successfully solved. The derivation from a microscopic Liouville-like approach based on densities, however, is shown to be impossible. ...
Contributing Partner: UNT Libraries
Dynamical Friction Coefficients for Plasmas Exhibiting Non-Spherical Electron Velocity Distributions

Dynamical Friction Coefficients for Plasmas Exhibiting Non-Spherical Electron Velocity Distributions

Date: August 1961
Creator: Williams, G. Bruce
Description: This investigation is designed to find the net rate of decrease in the component of velocity parallel to the original direction of motion of a proton moving through an electron gas exhibiting a non-spherical velocity distribution.
Contributing Partner: UNT Libraries
EEG, Alpha Waves and Coherence

EEG, Alpha Waves and Coherence

Date: May 2010
Creator: Ascolani, Gianluca
Description: This thesis addresses some theoretical issues generated by the results of recent analysis of EEG time series proving the brain dynamics are driven by abrupt changes making them depart from the ordinary Poisson condition. These changes are renewal, unpredictable and non-ergodic. We refer to them as crucial events. How is it possible that this form of randomness be compatible with the generation of waves, for instance alpha waves, whose observation seems to suggest the opposite view the brain is characterized by surprisingly extended coherence? To shed light into this apparently irretrievable contradiction we propose a model based on a generalized form of Langevin equation under the influence of a periodic stimulus. We assume that there exist two different forms of time, a subjective form compatible with Poisson statistical physical and an objective form that is accessible to experimental observation. The transition from the former to the latter form is determined by the brain dynamics interpreted as emerging from the cooperative interaction among many units that, in the absence of cooperation would generate Poisson fluctuations. We call natural time the brain internal time and we make the assumption that in the natural time representation the time evolution of the EEG variable ...
Contributing Partner: UNT Libraries
The Effect of Average Grain Size on Polycrystalline Diamond Films

The Effect of Average Grain Size on Polycrystalline Diamond Films

Date: May 2002
Creator: Abbott, Patrick Roland
Description: The work function of hydrogen-terminated, polycrystalline diamond was studied using ultraviolet photoelectron spectroscopy. Polycrystalline diamond films were deposited onto molybdenum substrates by electrophoresis for grain sizes ranging from 0.3 to 108 microns. The work function and electron affinity were measured using 21.2 eV photons from a helium plasma source. The films were characterized by x-ray photoelectron spectroscopy to determine elemental composition and the sp2/sp3 carbon fraction. The percentage of (111) diamond was determined by x-ray diffraction, and scanning electron microscopy was performed to determine average grain size. The measured work function has a maximum of 5.1 eV at 0.3 microns, and decreases to 3.2 eV at approximately 4 microns. Then the work function increases with increasing grain size to 4.0 eV at 15 microns and then asymptotically approaches the 4.8 eV work function of single crystal diamond at 108 microns. These results are consistent with a 3-component model in which the work function is controlled by single-crystal (111) diamond at larger grain sizes, graphitic carbon at smaller grain sizes, and by the electron affinity for the intervening grain sizes.
Contributing Partner: UNT Libraries
Effect of Sample Geometry on Magnetomorphic Oscillations in the Hall Effect in Cadium at Liquid-Helium Temperatures

Effect of Sample Geometry on Magnetomorphic Oscillations in the Hall Effect in Cadium at Liquid-Helium Temperatures

Date: June 1967
Creator: Fielder, James Thomas
Description: This thesis presents observations on size-effect oscillations in the Hall effect in an oriented single crystal of highly pure cadmium at liquid-helium temperatures. All measurements were made in transverse magnetic field.
Contributing Partner: UNT Libraries
The Effects of Cesium Deposition and Gas Exposure on the Field Emission Properties of Single Wall and Multiwall Carbon Nanotubes

The Effects of Cesium Deposition and Gas Exposure on the Field Emission Properties of Single Wall and Multiwall Carbon Nanotubes

Date: May 2002
Creator: Wadhawan, Atul
Description: The effects of Cs deposition on the field emission (FE) properties of single-walled carbon nanotube (SWNT) bundles were studied. In addition, a comparative study was made on the effects of O2, Ar and H2 gases on the field emission properties of SWNT bundles and multiwall carbon nanotubes (MWNTs). We observed that Cs deposition decreases the turn-on field for FE by a factor of 2.1 - 2.9 and increases the FE current by 6 orders of magnitude. After Cs deposition, the FE current versus voltage (I-V) curves showed non-Fowler-Nordheim behavior at large currents consistent with tunneling from adsorbate states. At lower currents, the ratio of the slope of the FE I-V curves before and after Cs deposition was approximately 2.1. Exposure to N2 does not decrease the FE current, while exposure to O2 decreases the FE current. Our results show that cesiated SWNT bundles have great potential as economical and reliable vacuum electron sources. We find that H2 and Ar gases do not significantly affect the FE properties of SWNTs or MWNTs. O2 temporarily reduces the FE current and increases the turn-on voltage of SWNTs. Full recovery of these properties occurred after operation in UHV. The higher operating voltages in an ...
Contributing Partner: UNT Libraries
Effects of Dissipation on Propagation of Surface Electromagnetic and Acoustic Waves

Effects of Dissipation on Propagation of Surface Electromagnetic and Acoustic Waves

Date: May 2012
Creator: Nagaraj, Nagaraj
Description: With the recent emergence of the field of metamaterials, the study of subwavelength propagation of plane waves and the dissipation of their energy either in the form of Joule losses in the case of electomagnetic waves or in the form of viscous dissipation in the case of acoustic waves in different interfaced media assumes great importance. with this motivation, I have worked on problems in two different areas, viz., plasmonics and surface acoustics. the first part (chapters 2 & 3) of the dissertation deals with the emerging field of plasmonics. Researchers have come up with various designs in an efort to fabricate efficient plasmonic waveguides capable of guiding plasmonic signals. However, the inherent dissipation in the form of Joule losses limits efficient usage of surface plasmon signal. a dielectric-metal-¬dielectric planar structure is one of the most practical plasmonic structures that can serve as an efficient waveguide to guide electromagnetic waves along the metal-dielectric boundary. I present here a theoretical study of propagation of surface plasmons along a symmetric dielectric-metal-dielectric structure and show how proper orientation of the optical axis of the anisotropic substrate enhances the propagation length. an equation for propagation length is derived in a wide range of frequencies. ...
Contributing Partner: UNT Libraries
The Effects of Lead Placement and Sample Shape in the Measurement of Electrical Resistivity

The Effects of Lead Placement and Sample Shape in the Measurement of Electrical Resistivity

Date: August 1970
Creator: Stephens, Anthony E.
Description: This thesis is a study of the effects of lead placement and sample shape in the measurement of electrical resistivity.
Contributing Partner: UNT Libraries
Electrical Conductivity in Thin Films

Electrical Conductivity in Thin Films

Date: May 1973
Creator: Meyer, Frederick Otto
Description: This thesis deals with electrical conductivity in thin films. Classical and quantum size effects in conductivity are discussed including some experimental evidence of quantum size effects. The component conductivity along the applied electric field of a thin film in a transverse magnetic field is developed in a density matrix method.
Contributing Partner: UNT Libraries
Electron Density and Collision Frequency Studies Using a Resonant Microwave Cavity as a Probe

Electron Density and Collision Frequency Studies Using a Resonant Microwave Cavity as a Probe

Date: May 1973
Creator: Freeman, Ronald Harold
Description: Electron densities and collision frequencies were obtained on a number of gases in a dc discharge at low pressures (0.70-2mm of Hg). These measurements were performed by microwave probing of a filament of the dc discharge placed coaxially in a resonant cavity operating in a TM₀₁₀ mode. The equipment and techniques for making the microwave measurements employing the resonant cavity are described. One of the main features of this investigation is the technique of differentiating the resonance signal of the loaded cavity in order to make accurate measurements of the resonant frequency and half-power point frequencies.
Contributing Partner: UNT Libraries