Search Results

open access

Deep Minima and Vortices for Positronium Formation in Positron-Hydrogen and Positron-Helium Collisions

Description: This dissertation work is a study of positronium formation for positron-hydrogen and positron-helium collisions in the Ore gap (the energy region between the threshold for ground-state positronium formation and the first excitation level of the target atom) using variational K-matrices. We have fitted the K-matrices using multichannel effective range theories and using polynomials. Using the variational K-matrices and their fits, we have located zeros in the positronium-formation scattering amp… more
Date: May 2021
Creator: Alrowaily, Albandari Wanes
open access

Defect Modulated Properties of Molybdenum Disulfide Monolayer Films

Description: In this dissertation work, the study focuses on large areal growth of MoS2 monolayers and a study of the structural, optical and electrical properties of such monolayers before and after transfer using a polymer-lift off technique. This work will discuss the issue of contact resistance and the effect of defects (both intrinsic and extrinsic) on the overall quality of the monolayer films. The significance of this dissertation work is that a reproducible strategy for monolayer MoS2 film growth an… more
Date: May 2022
Creator: Jiang, Yan
open access

Degenerate Four Wave Mixing of Short and Ultrashort Light Pulses

Description: This dissertation presents experimental and theoretical studies of transient degenerate four wave mixing (DFWM) in organic dyes. Chapter 1 is an introduction to DFWM. Chapter 2 describes DFWM experiments that were performed in the gain medium of a dye laser. Chapter 3 presents the theory of DFWM of short pulses in three level saturable media. Chapter 4 presents DFWM experiments of femtosecond pulses in the saturable absorber of a passively modelocked ring dye laser. Chapter 5 presents the theor… more
Date: August 1984
Creator: McMichael, Ian C. (Ian Charles)
open access

Degradation Mechanisms and Dynamics of Silicon Telluride: A Guide to the Effective Fabrication and Characterization of Silicon Telluride-Based Devices

Description: Silicon telluride (Si2Te3) and many other tellurium containing compounds show emergent Raman peaks located at ~120 cm-1 and ~140 cm-1 as they age. The origin of these two emergent peaks is controversial in the literature and has been attributed to myriad causes such as the intrinsic Raman modes of the telluride materials, surface oxidation, defects, double resonances, and tellurium precipitates. The controversial nature of these peaks has led to the misidentification of highly degraded materia… more
Date: December 2023
Creator: Hathaway, Evan Allen
open access

Density Profile of a Quantized Vortex Line in Superfluid Helium-4

Description: The density amplitude of an isolated quantum vortex line in superfluid 4He is calculated using a generalized Gross-Pitaevskii (G-P) equation. The generalized G-P equation for the order parameter extends the usual mean-field approach by replacing the interatomic potential in the ordinary G-P equation by a local, static T matrix, which takes correlations between the particles into account. The T matrix is a sum of ladder diagrams appearing in a diagrammatic expansion of the mean field term in an … more
Date: May 1975
Creator: Harper, John Howard
open access

Design, Construction, and Application of an Electrostatic Quadrupole Doublet for Heavy Ion Nuclear Microprobe Research

Description: A nuclear microprobe, typically consisting of 2 - 4 quadrupole magnetic lenses and apertures serving as objective and a collimating divergence slits, focuses MeV ions to approximately 1 x 1 μm for modification and analysis of materials. Although far less utilized, electrostatic quadrupole fields similarly afford strong focusing of ions and have the added benefit of doing so independent of ion mass. Instead, electrostatic quadrupole focusing exhibits energy dependence on focusing ions. A heav… more
Date: December 2017
Creator: Manuel, Jack Elliot
open access

Detection of the Resonant Vibration of the Cellular Membrane Using Femtosecond Laser Pulses

Description: An optical detection technique is developed to detect and measure the resonant vibration of the cellular membrane. Biological membranes are active components of living cells and play a complex and dynamic role in life processes. They are believed to have oscillation modes of frequencies in the range of 1 to 1000 GHz. To measure such a high-frequency vibration, a linear laser cavity is designed to produce a train of femtosecond pulses of adjustable repetition rate. The method is then directly ap… more
Date: December 1989
Creator: Jamasbi, Nooshin
open access

A Determination of the Fine Structure Constant Using Precision Measurements of Helium Fine Structure

Description: Spectroscopic measurements of the helium atom are performed to high precision using an atomic beam apparatus and electro-optic laser techniques. These measurements, in addition to serving as a test of helium theory, also provide a new determination of the fine structure constant α. An apparatus was designed and built to overcome limitations encountered in a previous experiment. Not only did this allow an improved level of precision but also enabled new consistency checks, including an extr… more
Date: August 2010
Creator: Smiciklas, Marc
open access

Deterministic Brownian Motion

Description: The goal of this thesis is to contribute to the ambitious program of the foundation of developing statistical physics using chaos. We build a deterministic model of Brownian motion and provide a microscpoic derivation of the Fokker-Planck equation. Since the Brownian motion of a particle is the result of the competing processes of diffusion and dissipation, we create a model where both diffusion and dissipation originate from the same deterministic mechanism - the deterministic interaction of t… more
Date: August 1993
Creator: Trefán, György

Developing Ultra-Fast Plasmonic Spiking Neuron via Integrated Photonics

Description: This research provides a proof of concept and background theory for the physics behind the state-of-the-art ultra-fast plasmonic spiking neurons (PSN), which can serve as a primary synaptic device for developing a platform for fast neural computing. Such a plasmonic-powered computing system allows localized AI with ultra-fast operation speed. The designed architecture for a plasmonic spiking neuron (PSN) presented in this thesis is a photonic integrated nanodevice consisting of two electro-opti… more
This item is restricted from view until September 1, 2024.
Date: August 2022
Creator: Goudarzi, Abbas, Sr.
open access

Development and Application of a Nonlinear Optical Characterization Technique

Description: This dissertation reports a sensitive single beam experimental technique for measuring nonlinear refraction and nonlinear absorption in a wide variety of materials. The experimental setup is described and a comprehensive theoretical analysis including cases where nonlinear refraction and nonlinear absorption are also presented.
Date: August 1991
Creator: Said, Ali A. (Ali Ahmad)
open access

Dielectric Relaxation of Aqueous Solutions at Microwave Frequencies for 335 GHz. Using a Loaded Microwave Cavity Operating in the TM010 Mode

Description: The frequency dependence and temperature dependence of the complex dielectric constant of water is of great interest. The temperature dependence of the physical properties of water given in the literature, specific heat, thermal conductivity, electric conductivity, pH, etc. are compared to the a. c. (microwave) and d. c. conductivity of water with a variety of concentration of different substances such as HC1, NaCl, HaS04, etc. When each of these properties is plotted versus inverse absolute te… more
Date: August 1994
Creator: Wang, Henry F. S. (Henry Fu-Sen)
open access

Diffusion Kinetics and Microstructure of Eutectic and Composite Solder/Copper Joints

Description: Sn/Pb solders are widely used by the electronics industry to provide both mechanical and electrical interconnections between electronic components and printed circuit boards. Solders with enhanced mechanical properties are required for high reliability for Surface Mount Technology (SMT) applications. One approach to improve the mechanical properties of solder is to add metallic or intermetallic particles to eutectic 63Sn/37Pb solder to form composite solders. Cu6Sn5 and Cu3Sn form and grow at t… more
Date: May 1994
Creator: Wu, Yujing
open access

Dispersion of the Nonlinear Refractive Index of CS₂ in the Spectral Range of 9-11 μm

Description: The nonlinear refractive index (n2) of room temperature liquid CS2 in the wavelength range of 9 to 11 micrometers is measured. A line tunable hybrid C02 TEA laser and amplifier system is used for the experiments. In these measurements the well known photoacoustic method is utilized to observe the onset of whole beam self-focusing. The photoacoustic signal in a CS2 cell, much longer than the confocal parameter, is monitored. The departure of the acoustic signal from linear growth marks the criti… more
Date: May 1987
Creator: Mohebi, Mehrdad
open access

Distribution of Nighttime F-region Molecular Ion Concentrations and 6300 Å Nightglow Morphology

Description: The purpose of this study is two-fold. The first is to determine the dependence of the molecular ion profiles on the various ionospheric and atmospheric parameters that affect their distributions. The second is to demonstrate the correlation of specific ionospheric parameters with 6300 Å nightglow intensity during periods of magnetically quiet and disturbed conditions.
Date: December 1970
Creator: Brasher, William Ernest, 1939-
open access

A Dynamic and Thermodynamic Approach to Complexity.

Description: The problem of establishing the correct approach to complexity is a very hot and crucial issue to which this dissertation gives some contributions. This dissertation considers two main possibilities, one, advocated by Tsallis and co-workers, setting the foundation of complexity on a generalized, non-extensive , form of thermodynamics, and another, proposed by the UNT Center for Nonlinear Science, on complexity as a new condition that, for physical systems, would be equivalent to a state of matt… more
Date: August 2003
Creator: Yang, Jin
open access

The Dynamic Foundation of Fractal Operators.

Description: The fractal operators discussed in this dissertation are introduced in the form originally proposed in an earlier book of the candidate, which proves to be very convenient for physicists, due to its heuristic and intuitive nature. This dissertation proves that these fractal operators are the most convenient tools to address a number of problems in condensed matter, in accordance with the point of view of many other authors, and with the earlier book of the candidate. The microscopic foundation … more
Date: May 2003
Creator: Bologna, Mauro
open access

EEG, Alpha Waves and Coherence

Description: This thesis addresses some theoretical issues generated by the results of recent analysis of EEG time series proving the brain dynamics are driven by abrupt changes making them depart from the ordinary Poisson condition. These changes are renewal, unpredictable and non-ergodic. We refer to them as crucial events. How is it possible that this form of randomness be compatible with the generation of waves, for instance alpha waves, whose observation seems to suggest the opposite view the brain is … more
Date: May 2010
Creator: Ascolani, Gianluca
open access

The Effect of Average Grain Size on Polycrystalline Diamond Films

Description: The work function of hydrogen-terminated, polycrystalline diamond was studied using ultraviolet photoelectron spectroscopy. Polycrystalline diamond films were deposited onto molybdenum substrates by electrophoresis for grain sizes ranging from 0.3 to 108 microns. The work function and electron affinity were measured using 21.2 eV photons from a helium plasma source. The films were characterized by x-ray photoelectron spectroscopy to determine elemental composition and the sp2/sp3 carbon fractio… more
Date: May 2002
Creator: Abbott, Patrick Roland
open access

The Effect of Intervalence-Band Absorption, Auger Recombination, Surface Recombination, Diffusion and Carrier Cooling on the Picosecond Dynamics of Laser-Induced Plasmas in Germanium

Description: The picosecond optical response of germanium is investigated by performing excitation-probe experiments on a thin, intrinsic-germanium wafer maintained at 135 K. The results of three distinct experiments are reported: (1) the transmission of a single pulse is measured as a function of irradiance, (2) the probe transmission is measured at a fixed time after excitation as a function of the excitation energy, and (3) the transmission of a probe pulse is monitored as a function of time after excita… more
Date: May 1983
Creator: Lindle, James Ryan
open access

The Effects of Cesium Deposition and Gas Exposure on the Field Emission Properties of Single Wall and Multiwall Carbon Nanotubes

Description: The effects of Cs deposition on the field emission (FE) properties of single-walled carbon nanotube (SWNT) bundles were studied. In addition, a comparative study was made on the effects of O2, Ar and H2 gases on the field emission properties of SWNT bundles and multiwall carbon nanotubes (MWNTs). We observed that Cs deposition decreases the turn-on field for FE by a factor of 2.1 - 2.9 and increases the FE current by 6 orders of magnitude. After Cs deposition, the FE current versus voltage (… more
Date: May 2002
Creator: Wadhawan, Atul
open access

Effects of Dissipation on Propagation of Surface Electromagnetic and Acoustic Waves

Description: With the recent emergence of the field of metamaterials, the study of subwavelength propagation of plane waves and the dissipation of their energy either in the form of Joule losses in the case of electomagnetic waves or in the form of viscous dissipation in the case of acoustic waves in different interfaced media assumes great importance. with this motivation, I have worked on problems in two different areas, viz., plasmonics and surface acoustics. the first part (chapters 2 & 3) of the disser… more
Date: May 2012
Creator: Nagaraj, Nagaraj
open access

Effects of Quantum Coherence and Interference

Description: Quantum coherence and interference (QCI) is a phenomenon that takes place in all multi-level atomic systems interacting with multiple lasers. In this work QCI is used to create several interesting effects like lasing without inversion (LWI), controlling group velocity of light to extreme values, controlling the direction of propagation through non-linear phase matching condition and for controlling the correlations in field fluctuations. Controlling group velocity of light is very interesting b… more
Date: August 2013
Creator: Davuluri, Subrahmanya Bhima Sankar
open access

The Effects of Residual Gases on the Field Emission Properties of ZnO, GaN, ZnS Nanostructures, and the Effects of Light on the Resistivity of Graphene

Description: In this dissertation, I present that at a vacuum of 3×10-7 Torr, residual O2, CO2, H2 and Ar exposure do not significantly degrade the field emission (FE) properties of ZnO nanorods, but N2 exposure significantly does. I propose that this could be due to the dissociation of N2 into atomic nitrogen species and the reaction of such species with ZnO. I also present the effects of O2, CO2, H2O, N2, H2, and Ar residual gas exposure on the FE properties of GaN and ZnS nanostructure. A brief review of… more
Date: May 2014
Creator: Mo, Yudong
Back to Top of Screen