You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Physics
 Collection: UNT Theses and Dissertations
L- and M-Shell X-Ray Production Cross Sections of Neodymium Gadolinium, Holmium, Ytterbium, Gold and Lead by 25-MeV Carbon and 32-MeV Oxygen Ions

L- and M-Shell X-Ray Production Cross Sections of Neodymium Gadolinium, Holmium, Ytterbium, Gold and Lead by 25-MeV Carbon and 32-MeV Oxygen Ions

Date: August 1987
Creator: Andrews, Mike C., 1949-
Description: L- and M-shell x-ray production cross sections have been measured for thin solid targets of neodymium, gadolinium, holmium, ytterbium, gold, and lead by 25 MeV 12/6C^q+ (q=4,5,6) and by 32 MeV 16/8O^q+ (q=5,7,8). The cross sections were determined from measurements made with thin targets (< 2.5 μg/cm2). For projectiles with one or two K-shell vacancies, the target x-ray production cross sections were found to be enhanced over those for projectiles without a K-shell vacancy. The sum of direct ionization to the continuum (DI) plus electron capture (EC) to the L, M, N... shells and EC to the K-shell of the projectile have been extracted from the data. The results are compared to the predictions of first Born theories, i.e., plane wave Born approximation for DI and Oppenheimer-Brinkman-Kramers formula of Nikolaev for EC and to the ECPSSR approach that accounts for Energy loss and Coulomb deflection of the projectile as well as for Relativistic and Perturbed Stationary States of inner shell electrons.
Contributing Partner: UNT Libraries
Non-Poissonian statistics, aging and "blinking'" quantum dots.

Non-Poissonian statistics, aging and "blinking'" quantum dots.

Date: August 2004
Creator: Aquino, Gerardo
Description: This dissertation addresses the delicate problem of aging in complex systems characterized by non-Poissonian statistics. With reference to a generic two-states system interacting with a bath it is shown that to properly describe the evolution of such a system within the formalism of the continuous time random walk (CTRW), it has to be taken into account that, if the system is prepared at time t=0 and the observation of the system starts at a later time ta>0, the distribution of the first sojourn times in each of the two states depends on ta, the age of the system. It is shown that this aging property in the fractional derivative formalism forces to introduce a fractional index depending on time. It is shown also that, when a stationary condition exists, the Onsager regression principle is fulfilled only if the system is aged and consequently if an infinitely aged distribution for the first sojourn times is adopted in the CTRW formalism used to describe the system itself. This dissertation, as final result, shows how to extend to the non-Poisson case the Kubo Anderson (KA) lineshape theory, so as to turn it into a theoretical tool adequate to describe the time evolution of ...
Contributing Partner: UNT Libraries
Z1 Dependence of Ion-Induced Electron Emission

Z1 Dependence of Ion-Induced Electron Emission

Date: December 1993
Creator: Arrale, Abdikarim M. (Abdikarim Mohamed)
Description: Knowledge of the atomic number (Zt) dependence of ion-induced electron emission yields (Y) can be the basis for a general understanding of ion-atom interaction phenomena and, in particular, for the design of Zrsensitive detectors that could be useful, for example, in the separation of isobars in accelerator mass spectrometry. The Zx dependence of ion-induced electron emission yields has been investigated using heavy ions of identical velocity (v = 2 v0, with v0 as the Bohr velocity) incident in a normal direction on sputter-cleaned carbon foils. Yields measured in this work plotted as a function of the ion's atomic number reveal an oscillatory behavior with pronounced maxima and minima. This nonmonotonic dependence of the yield on Zx will be discussed in the light of existing theories.
Contributing Partner: UNT Libraries
EEG, Alpha Waves and Coherence

EEG, Alpha Waves and Coherence

Date: May 2010
Creator: Ascolani, Gianluca
Description: This thesis addresses some theoretical issues generated by the results of recent analysis of EEG time series proving the brain dynamics are driven by abrupt changes making them depart from the ordinary Poisson condition. These changes are renewal, unpredictable and non-ergodic. We refer to them as crucial events. How is it possible that this form of randomness be compatible with the generation of waves, for instance alpha waves, whose observation seems to suggest the opposite view the brain is characterized by surprisingly extended coherence? To shed light into this apparently irretrievable contradiction we propose a model based on a generalized form of Langevin equation under the influence of a periodic stimulus. We assume that there exist two different forms of time, a subjective form compatible with Poisson statistical physical and an objective form that is accessible to experimental observation. The transition from the former to the latter form is determined by the brain dynamics interpreted as emerging from the cooperative interaction among many units that, in the absence of cooperation would generate Poisson fluctuations. We call natural time the brain internal time and we make the assumption that in the natural time representation the time evolution of the EEG variable ...
Contributing Partner: UNT Libraries
Charge State Dependence of L-Shell X-Ray Production Cross Sections of ₂₈Ni, ₂₉Cu, ₃₀Zn, ₃₁Ga, and ₃₂Ge by Energetic Oxygen Ions

Charge State Dependence of L-Shell X-Ray Production Cross Sections of ₂₈Ni, ₂₉Cu, ₃₀Zn, ₃₁Ga, and ₃₂Ge by Energetic Oxygen Ions

Date: August 1996
Creator: Azordegan, Amir R. (Amir Reza)
Description: Charge state dependence of L-shell x-ray production cross sections have been measured for 4-14 MeV ¹⁶O^q (q=3⁺-8⁺) ions incident on ultra-clean, ultra-thin copper, and for 12 MeV ¹⁶O^q (q=3⁺-8⁺) on nickel, zinc, gallium and germanium solid foils. L-shell x-ray production cross section were measured using target foils of thickness ≤0.6 μg/cm² evaporated onto 5 μg/cm² carbon backings. Oxygen ions at MeV energies and charge state q were produced using a 3MV 9SDH-2 National Electrostatics Corporation tandem Pelletron accelerator. Different charge states, with and without K-vacancies, were produced using a post acceleration nitrogen striping gas cell or ¹²C stripping foils. L-shell x-rays from ultra-thin ₂₈Ni, ₂₉Cu,₃₀Zn,₃₁Ga, and ₃₂Ge targets were measured using a Si(Li) x-ray detector with a FWHM resolution of 135 eV at 5.9 keV. The scattered projectiles were detected simultaneously by means of silicon surface barrier detectors at angle of 45° and 169° with respect to the beam direction. The electron capture (EC) as well as direct ionization (DI) contributions were determined from the projectile charge state dependence of the target x-ray production cross sections under single collision conditions. The present work was undertaken to expand the measurements of L-shell x-ray production cross sections upon selected elements with low ...
Contributing Partner: UNT Libraries
The Nonadditive Generalization of Klimontovich's S-Theorem for Open Systems and Boltzmann's Orthodes

The Nonadditive Generalization of Klimontovich's S-Theorem for Open Systems and Boltzmann's Orthodes

Date: August 2008
Creator: Bagci, Gokhan Baris
Description: We show that the nonadditive open systems can be studied in a consistent manner by using a generalized version of S-theorem. This new generalized S-theorem can further be considered as an indication of self-organization in nonadditive open systems as prescribed by Haken. The nonadditive S-theorem is then illustrated by using the modified Van der Pol oscillator. Finally, Tsallis entropy as an equilibrium entropy is studied by using Boltzmann's method of orthodes. This part of dissertation shows that Tsallis ensemble is on equal footing with the microcanonical, canonical and grand canonical ensembles. However, the associated entropy turns out to be Renyi entropy.
Contributing Partner: UNT Libraries
Anderson Localization in Two-Channel Wires with Correlated Disorder: DNA as an Application

Anderson Localization in Two-Channel Wires with Correlated Disorder: DNA as an Application

Date: December 2007
Creator: Bagci, V. M. Kemal
Description: This research studied the Anderson localization of electrons in two-channel wires with correlated disorder and in DNA molecules. It involved an analytical calculation part where the formula for the inverse localization length for electron states in a two-channel wire is derived. It also involved a computational part where the localization length is calculated for some DNA molecules. Electron localization in two-channel wires with correlated disorder was studied using a single-electron tight-binding model. Calculations were within second-order Born-approximation to second-order in disorder parameters. An analytical expression for localization length as a functional of correlations in potentials was found. Anderson localization in DNA molecules were studied in single-channel wire and two-channel models for electron transport in DNA. In both of the models, some DNA sequences exhibited delocalized electron states in their energy spectrum. Studies with two-channel wire model for DNA yielded important link between electron localization properties and genetic information.
Contributing Partner: UNT Libraries
Design and Testing of a Coincidence System

Design and Testing of a Coincidence System

Date: January 1961
Creator: Barnes, W. L., Jr.
Description: This paper is concerned with the design, testing and performance of a coincidence system, the proposed North Texas State College accelerator.
Contributing Partner: UNT Libraries
The Interactions of Plasma with Low-k Dielectrics: Fundamental Damage and Protection Mechanisms

The Interactions of Plasma with Low-k Dielectrics: Fundamental Damage and Protection Mechanisms

Date: August 2011
Creator: Behera, Swayambhu Prasad
Description: Nanoporous low-k dielectrics are used for integrated circuit interconnects to reduce the propagation delays, and cross talk noise between metal wires as an alternative material for SiO2. These materials, typically organosilicate glass (OSG) films, are exposed to oxygen plasmas during photoresist stripping and related processes which substantially damage the film by abstracting carbon, incorporating O and OH, eventually leading to significantly increased k values. Systematic studies have been performed to understand the oxygen plasma-induced damage mechanisms on different low-k OSG films of various porosity and pore interconnectedness. Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy and atomic force microscopy are used to understand the damage kinetics of O radicals, ultraviolet photons and charged species, and possible ways to control the carbon loss from the film. FTIR results demonstrate that O radical present in the plasma is primarily responsible for carbon abstraction and this is governed by diffusion mechanism involving interconnected film nanopores. The loss of carbon from the film can be controlled by closing the pore interconnections, He plasma pretreatment is an effective way to control the damage at longer exposure by closing the connections between the pores.
Contributing Partner: UNT Libraries
Fractional Calculus and Dynamic Approach to Complexity

Fractional Calculus and Dynamic Approach to Complexity

Date: December 2015
Creator: Beig, Mirza Tanweer Ahmad
Description: Fractional calculus enables the possibility of using real number powers or complex number powers of the differentiation operator. The fundamental connection between fractional calculus and subordination processes is explored and affords a physical interpretation for a fractional trajectory, that being an average over an ensemble of stochastic trajectories. With an ensemble average perspective, the explanation of the behavior of fractional chaotic systems changes dramatically. Before now what has been interpreted as intrinsic friction is actually a form of non-Markovian dissipation that automatically arises from adopting the fractional calculus, is shown to be a manifestation of decorrelations between trajectories. Nonlinear Langevin equation describes the mean field of a finite size complex network at criticality. Critical phenomena and temporal complexity are two very important issues of modern nonlinear dynamics and the link between them found by the author can significantly improve the understanding behavior of dynamical systems at criticality. The subject of temporal complexity addresses the challenging and especially helpful in addressing fundamental physical science issues beyond the limits of reductionism.
Contributing Partner: UNT Libraries