### Anomalous Behavior in the Rotational Spectra of the v₈=2 and the v₈=3 Vibrations for the ¹³C and ¹⁵N Tagged Isotopes of the CH₃CN Molecule in the Frequency Range 17-95 GHz

**Date:**December 1990

**Creator:**Al-Share, Mohammad A. (Mohammad Abdel)

**Description:**The rotational microwave spectra of the three isotopes (^13CH_3^12C^15N, ^12CH_3^13C^15N, and ^13CH_3^13C^15N) of the methyl cyanide molecule in the v_8=3, v_8=2, v_7=1 and v_4=1 vibrational energy levels for the rotational components 1£J£5 (for a range of frequency 17-95 GHz.) were experimentally and theoretically examined. Rotational components in each vibration were measured to determine the mutual interactions in each vibration between any of the vibrational levels investigated. The method of isotopic substitution was employed for internal tuning of each vibrational level by single and double substitution of ^13C in the two sites of the molecule. It was found that relative frequencies within each vibration with respect to another vibration were shifted in a systematic way. The results given in this work were interpreted on the basis of these energy shifts. Large departure between experimentally measured and theoretically predicted frequency for the quantum sets (J, K=±l, ϑ=±1), Kϑ-l in the v_8=3 vibrational states for the ^13c and ^15N tagged isotopes of CH_3CN showed anomalous behavior which was explained as being due to Fermi resonance. Accidently strong resonances (ASR) were introduced to account for some departures which were not explained by Fermi resonance.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc330976/

### Antiferromagnetic Ordering in Picryl-Amino-Carbazyl

**Date:**August 1964

**Creator:**Porter, Wilbur A.

**Description:**The purpose of the experiment was to investigate other paramagnetic salts to determine whether the W. B. perchlorate type peak was more common than previously suspected. An organic salt, picryl-n-amino-carbazyl, was chosen.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc163864/

### Application of the Finite Element Method to Some Simple Systems in One and Two Dimensions.

**Date:**May 2002

**Creator:**Hunnell, Jason C.

**Description:**The finite element method (FEM) is reviewed and applied to the one-dimensional eigensystems of the isotropic harmonic oscillator, finite well, infinite well and radial hydrogen atom, and the two-dimensional eigensystems of the isotropic harmonic oscillator and the propagational modes of sound in a rectangular cavity. Computer codes that I developed were introduced and utilized to find accurate results for the FEM eigensolutions. One of the computer codes was modified and applied to the one-dimensional unbound quantum mechanical system of a square barrier potential and also provided accurate results.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3087/

### Application of the Wigner Formalism to a Slightly Relativistic Quantum Plasma

**Date:**August 1967

**Creator:**Harper, John H.

**Description:**A slightly relativistic fermion gas is described by the dynamical theory obtained from the Wigner distribution function. The problem is approached in a self-consistent manner including the two-body Darwin Hamiltonian. The goal is to find the departures from equilibrium and dispersion relations for wave propagation in the gas.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc130850/

### Approach to Quantum Information starting from Bell's Inequality (Part I) and Statistical Analysis of Time Series Corresponding to Complex Processes (Part II)

**Access:**Use of this item is restricted to the UNT Community.

**Date:**May 2002

**Creator:**Failla, Roberto

**Description:**I: Quantum information obeys laws that subtly extend those governing classical information, making possible novel effect such as cryptography and quantum computation. Quantum computations are extremely sensitive to disruption by interaction of the computer with its environment, but this problem can be overcome by recently developed quantum versions of classical error-correcting codes and fault-tolerant circuits. Based on these ideas, the purpose of this paper is to provide an approach to quantum information by analyzing and demonstrating Bell's inequality and by discussing the problems related to decoherence and error-correcting. II: The growing need for a better understanding of complex processes has stimulated the development of new and more advanced data analysis techniques. The purpose of this research was to investigate some of the already existing techniques (Hurst's rescaled range and relative dispersion analysis), to develop a software able to process time series with these techniques, and to get familiar with the theory of diffusion processes.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3092/

### Automatic Frequency Control of Microwave Radiation Sources

**Date:**August 1979

**Creator:**Payne, Bobby D.

**Description:**Resonant cavity controlled klystron frequency stabilization circuits and quartz-crystal oscillator frequency stabilization circuits were investigated for reflex klystrons operating at frequencies in the X-band range. The crystal oscillator circuit employed achieved better than 2 parts in 10 in frequency stability. A test of the functional properties of the frequency standard was made using the Stark effect in molecules.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc504304/

### Backscattering from Prolate Spheroids at Microwave Frequencies

**Date:**1956

**Creator:**Sybert, Jim

**Description:**This thesis examines backscattering from prolate spheroids at microwave frequencies.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc107919/

### Ballistic Deposition: Global Scaling and Local Time Series.

**Date:**December 2003

**Creator:**Schwettmann, Arne

**Description:**Complexity can emerge from extremely simple rules. A paradigmatic example of this is the model of ballistic deposition (BD), a simple model of sedimentary rock growth. In two separate Problem-in-Lieu-of Thesis studies, BD was investigated numerically in (1+1)-D on a lattice. Both studies are combined in this document. For problem I, the global interface roughening (IR) process was studied in terms of effective scaling exponents for a generalized BD model. The model used incorporates a tunable parameter B to change the cooperation between aggregating particles. Scaling was found to depart increasingly from the predictions of Kardar-Parisi-Zhang theory both with decreasing system sizes and with increasing cooperation. For problem II, the local single column evolution during BD rock growth was studied via statistical analysis of time series. Connections were found between single column time series properties and the global IR process.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4392/

### Boundary Scattering of Electrons in Thin Cadmium Single Crystals

**Date:**August 1968

**Creator:**Fortmayer, Gary William

**Description:**In the present investigation, zinc was plated onto a cadmium crystal to determine the effect on the scattering parameter.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc130996/

### Broad-band Light Emission From Ion Implanted Silicon Nanocrystals Via Plasmonic and Non-plasmonic Effects for Optoelectronics

**Date:**December 2012

**Creator:**Singh, Akhilesh K.

**Description:**Broad band light emission ranging from the ultraviolet (UV) to the near infrared (NIR) has been observed from silicon nanoparticles fabricated using low energy (30-45 keV) metal and non-metal ion implantation with a fluence of 5*1015 ions/cm2 in crystalline Si(100). It is found from a systematic study of the annealing carried out at certain temperatures that the spectral characteristics remains unchanged except for the enhancement of light emission intensity due to annealing. The annealing results in nucleation of metal nanoclusters in the vicinity of Si nanoparticles which enhances the emission intensity. Structural and optical characterization demonstrate that the emission originates from both highly localized defect bound excitons at the Si/Sio2 interface, as well as surface and interface traps associated with the increased surface area of the Si nanocrystals. The emission in the UV is due to interband transitions from localized excitonic states at the interface of Si/SiO2 or from the surface of Si nanocrystals. The radiative efficiency of the UV emission from the Si nanoparticles can be modified by the localized surface plasmon (LSP) interaction induced by the nucleation of silver nanoparticles with controlled annealing of the samples. The UV emission from Si nanoclusters are coupled resonantly to the LSP ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc177255/

### Brownian Movement and Quantum Computers

**Access:**Use of this item is restricted to the UNT Community.

**Date:**December 2004

**Creator:**Habel, Agnieszka

**Description:**This problem in lieu of thesis is a discussion of two topics: Brownian movement and quantum computers. Brownian movement is a physical phenomenon in which the particle velocity is constantly undergoing random fluctuations. Chapters 2, 3 and 4, describe Brownian motion from three different perspectives. The next four chapters are devoted to the subject of quantum computers, which are the signal of a new era of technology and science combined together. In the first chapter I present to a reader the two topics of my problem in lieu of thesis. In the second chapter I explain the idea of Brownian motion, its interpretation as a stochastic process and I find its distribution function. The next chapter illustrates the probabilistic picture of Brownian motion, where the statistical averages over trajectories are related to the probability distribution function. Chapter 4 shows how to derive the Langevin equation, introduced in chapter 1, using a Hamiltonian picture of a bath with infinite number of harmonic oscillators. The chapter 5 explains how the idea of quantum computers was developed and how step-by-step all the puzzles for the field of quantum computers were created. The next chapter, chapter 6, discus the basic quantum unit of information ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4660/

### A Calculation of the Kaon-Neutron Scattering Cross Section

**Date:**June 1966

**Creator:**Hooper, Robert Gibson

**Description:**The purpose of this investigation was to study the scattering processes of K+ mesons with neutrons. In order to do such a study one must first make certain basic assumptions about the type of interaction involved and then proceed to calculate physically meaningful qualities which describe the processes. Thus, the problem is this: assuming the validity of Feynman's rules for these strongly interacting particles, calculate the differential and total scattering cross sections for the interaction of scalar K+ mesons and neutrons.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc130687/

### Carbon Contamination Measurements in Single Silicon Crystals

**Date:**December 1970

**Creator:**Logsdon, Lawrence E.

**Description:**The intent of this investigation was to directly measure the amount of carbon contamination in a single silicon crystal and, in so doing, develop a mathematical procedure that would be applicable to other contaminants in other substances.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc131331/

### Carbon K-Shell X-Ray and Auger-Electron Cross Sections and Fluorescence Yields for Selected Molecular Gases by 0.6 To 2 .0 MeV Proton Impact

**Date:**August 1986

**Creator:**Bhalla, Raj P. (Raj Pal), 1948

**Description:**Absolute K-shell x-ray cross sections and Auger-electron cross sections are measured for carbon for 0.6 to 2.0 MeV proton incident on CH₄, n-C₄H₁₀ (n-Butane), i-C₄H₁₀ (isobutane), C₆H₆ (Benzene), C₂H₂ (Acetylene), CO and CO₂. Carbon K-shell fluorescence yields are calculated from the measurements of x-ray and Auger-electron cross sections. X-ray cross sections are measured using a variable geometry end window proportional counter. An alternate method is described for the measurement of the transmission of the proportional counter window. Auger electrons are detected by using a constant transmission energy Π/4 parallel pi ate electrostatic analyzer. Absolute carbon K-shell x-ray cross sections for CH₄ are compared to the known results of Khan et al. (1965). Auger-electron cross sections for proton impact on CH₄ are compared to the known experimental values of RΦdbro et al. (1979), and to the theoretical predictions of the first Born and ECPSSR. The data is in good agreement with both the first Born and ECPSSR, and within our experimental uncertainties with the measurements of RΦdbro et al. The x-ray cross sections, Auger-electron cross sections and fluorescence yields are plotted as a function of the Pauling charge, and show significant variations. These changes in the x-ray cross sections are compared ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc331849/

### Carbon Nanotube/Microwave Interactions and Applications to Hydrogen Fuel Cells.

**Access:**Use of this item is restricted to the UNT Community.

**Date:**May 2004

**Creator:**Imholt, Timothy James

**Description:**One of the leading problems that will be carried into the 21st century is that of alternative fuels to get our planet away from the consumption of fossil fuels. There has been a growing interest in the use of nanotechnology to somehow aid in this progression. There are several unanswered questions in how to do this. It is known that carbon nanotubes will store hydrogen but it is unclear how to increase that storage capacity and how to remove this hydrogen fuel once stored. This document offers some answers to these questions. It is possible to implant more hydrogen in a nanotube sample using a technique of ion implantation at energy levels ~50keV and below. This, accompanied with the rapid removal of that stored hydrogen through the application of a microwave field, proves to be one promising avenue to solve these two unanswered questions.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc5796/

### Chaos and Momentum Diffusion of the Classical and Quantum Kicked Rotor

**Date:**August 2005

**Creator:**Zheng, Yindong

**Description:**The de Broglie-Bohm (BB) approach to quantum mechanics gives trajectories similar to classical trajectories except that they are also determined by a quantum potential. The quantum potential is a "fictitious potential" in the sense that it is part of the quantum kinetic energy. We use quantum trajectories to treat quantum chaos in a manner similar to classical chaos. For the kicked rotor, which is a bounded system, we use the Benettin et al. method to calculate both classical and quantum Lyapunov exponents as a function of control parameter K and find chaos in both cases. Within the chaotic sea we find in both cases nonchaotic stability regions for K equal to multiples of π. For even multiples of π the stability regions are associated with classical accelerator mode islands and for odd multiples of π they are associated with new oscillator modes. We examine the structure of these regions. Momentum diffusion of the quantum kicked rotor is studied with both BB and standard quantum mechanics (SQM). A general analytical expression is given for the momentum diffusion at quantum resonance of both BB and SQM. We obtain agreement between the two approaches in numerical experiments. For the case of nonresonance the ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4824/

### Characterization and Field Emission Properties of Mo2C and Diamond Thin Films Deposited on Mo Foils and Tips by Electrophoresis

**Date:**August 1999

**Creator:**Rouse, Ambrosio A., 1960-

**Description:**In this dissertation M02C and diamond films deposited by electrophoresis on flat Mo foils and tips have been studied to determine their suitability as field emission tips.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc278393/

### Characterization, Properties and Applications of Novel Nanostructured Hydrogels.

**Access:**Use of this item is restricted to the UNT Community.

**Date:**December 2006

**Creator:**Tang, Shijun

**Description:**The characterization, properties and applications of the novel nanostructured microgel (nanoparticle network and microgel crystal) composed of poly-N-isopropylacrylanmide-co-allylamine (PNIPAM-co-allylamine) and PNIPAM-co-acrylic acid(AA) have been investigated. For the novel nanostructured hydrogels with the two levels of structure: the primary network inside each individual particle and the secondary network of the crosslinked nanoparticles, the new shear modulus, drug release law from hydrogel with heterogeneous structure have been studied. The successful method for calculating the volume fraction related the phase transition of colloid have been obtained. The kinetics of crystallization in an aqueous dispersion of PNIPAM particles has been explored using UV-visible transmission spectroscopy. This dissertation also includes the initial research on the melting behavior of colloidal crystals composed of PNIPAM microgels. Many new findings in this study area have never been reported before. The theoretical model for the columnar crystal growth from the top to bottom of PNIPAM microgel has been built, which explains the growth mechanism of the novel columnar hydrogel colloidal crystals. Since the unique structure of the novel nanostructured hydrogels, their properties are different with the conventional hydrogels and the hard-sphere-like system. The studies and results in this dissertation have the important significant for theoretical study and valuable application ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc5605/

### Charge Collection Studies on Integrated Circuit Test Structures using Heavy-Ion Microbeams and MEDICI Simulation Calculations

**Date:**May 2000

**Creator:**Guo, Baonian

**Description:**Ion induced charge collection dynamics within Integrated Circuits (ICs) is important due to the presence of ionizing radiation in the IC environment. As the charge signals defining data states are reduced by voltage and area scaling, the semiconductor device will naturally have a higher susceptibility to ionizing radiation induced effects. The ionizing radiation can lead to the undesired generation and migration of charge within an IC. This can alter, for example, the memory state of a bit, and thereby produce what is called a "soft" error, or Single Event Upset (SEU). Therefore, the response of ICs to natural radiation is of great concern for the reliability of future devices. Immunity to soft errors is listed as a requirement in the 1997 National Technology Roadmap for Semiconductors prepared by the Semiconductor Industry Association in the United States. To design more robust devices, it is essential to create and test accurate models of induced charge collection and transport in semiconductor devices. A heavy ion microbeam produced by an accelerator is an ideal tool to study charge collection processes in ICs and to locate the weak nodes and structures for improvement through hardening design. In this dissertation, the Ion Beam Induced Charge Collection ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc2469/

### Charge State Dependence of L-Shell X-Ray Production Cross Sections of ₂₈Ni, ₂₉Cu, ₃₀Zn, ₃₁Ga, and ₃₂Ge by Energetic Oxygen Ions

**Date:**August 1996

**Creator:**Azordegan, Amir R. (Amir Reza)

**Description:**Charge state dependence of L-shell x-ray production cross sections have been measured for 4-14 MeV ¹⁶O^q (q=3⁺-8⁺) ions incident on ultra-clean, ultra-thin copper, and for 12 MeV ¹⁶O^q (q=3⁺-8⁺) on nickel, zinc, gallium and germanium solid foils. L-shell x-ray production cross section were measured using target foils of thickness ≤0.6 μg/cm² evaporated onto 5 μg/cm² carbon backings. Oxygen ions at MeV energies and charge state q were produced using a 3MV 9SDH-2 National Electrostatics Corporation tandem Pelletron accelerator. Different charge states, with and without K-vacancies, were produced using a post acceleration nitrogen striping gas cell or ¹²C stripping foils. L-shell x-rays from ultra-thin ₂₈Ni, ₂₉Cu,₃₀Zn,₃₁Ga, and ₃₂Ge targets were measured using a Si(Li) x-ray detector with a FWHM resolution of 135 eV at 5.9 keV. The scattered projectiles were detected simultaneously by means of silicon surface barrier detectors at angle of 45° and 169° with respect to the beam direction. The electron capture (EC) as well as direct ionization (DI) contributions were determined from the projectile charge state dependence of the target x-ray production cross sections under single collision conditions. The present work was undertaken to expand the measurements of L-shell x-ray production cross sections upon selected elements with low ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc277981/

### Charge State Dependence of M-Shell X-Ray Production in 67Ho by 2-12 MeV Carbon Ions

**Date:**August 1994

**Creator:**Sun, Hsueh-Li

**Description:**The charge state dependence of M-shell x-ray production cross sections of 67HO bombarded by 2-12 MeV carbon ions with and without K-vacancies are reported. The experiment was performed using an NEC 9SDH-2 tandem accelerator at the Ion Beam Modification and Analysis Laboratory of the University of North Texas. The high charge state carbon ions were produced by a post-accelerator stripping gas cell. Ultra-clean holmium targets were used in ion-atom collision to generate M-shell x rays at energies from 1.05 to 1.58 keV. The x-ray measurements were made with a windowless Si(Li) x-ray detector that was calibrated using radiative sources, particle induced x-ray emission (PIXE), and the atomic field bremsstrahlung (AFB) techniques.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc278725/

### Charge State Distributions in Molecular Dissociation

**Date:**December 1998

**Creator:**Renfrow, Steven N. (Steven Neal)

**Description:**The present work provides charge state fractions that may be used to generate TEAMS relative sensitivity factors for impurities in semiconductor materials.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc278340/

### Charged Particle Transport and Confinement Along Null Magnetic Curves and in Various Other Nonuniform Field Configurations for Applications in Antihydrogen Production

**Date:**May 2016

**Creator:**Lane, Ryan Andrew

**Description:**Comparisons between measurements of the ground-state hyperfine structure and gravitational acceleration of hydrogen and antihydrogen could provide a test of fundamental physical theories such as CPT (charge conjugation, parity, time-reversal) and gravitational symmetries. Currently, antihydrogen traps are based on Malmberg-Penning traps. The number of antiprotons in Malmberg-Penning traps with sufficiently low energy to be suitable for trappable antihydrogen production may be reduced by the electrostatic space charge of the positrons and/or collisions among antiprotons. Alternative trap designs may be needed for future antihydrogen experiments. A computational tool is developed to simulate charged particle motion in customizable magnetic fields generated by combinations of current loops and current lines. The tool is used to examine charged particle confinement in two systems consisting of dual, levitated current loops. The loops are coaxial and arranged to produce a magnetic null curve. Conditions leading to confinement in the system are quantified and confinement modes near the null curve and encircling one or both loops are identified. Furthermore, the tool is used to examine and quantify charged particle motion parallel to the null curve in the large radius limit of the dual, levitated current loops. An alternative to new trap designs is to identify the effects ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc849779/

### The Classical Limit of Quantum Mechanics

**Date:**December 1977

**Creator:**Hefley, Velton Wade

**Description:**The Feynman path integral formulation of quantum mechanics is a path integral representation for a propagator or probability amplitude in going between two points in space-time. The wave function is expressed in terms of an integral equation from which the Schrodinger equation can be derived. On taking the limit h — 0, the method of stationary phase can be applied and Newton's second law of motion is obtained. Also, the condition the phase vanishes leads to the Hamilton - Jacobi equation. The secondary objective of this paper is to study ways of relating quantum mechanics and classical mechanics. The Ehrenfest theorem is applied to a particle in an electromagnetic field. Expressions are found which are the hermitian Lorentz force operator, the hermitian torque operator, and the hermitian power operator.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc504591/