You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Physics
On Chaos and Anomalous Diffusion in Classical and Quantum Mechanical Systems

On Chaos and Anomalous Diffusion in Classical and Quantum Mechanical Systems

Date: August 1998
Creator: Stefancich, Marco
Description: The phenomenon of dynamically induced anomalous diffusion is both the classical and quantum kicked rotor is investigated in this dissertation. We discuss the capability of the quantum mechanical version of the system to reproduce for extended periods the corresponding classical chaotic behavior.
Contributing Partner: UNT Libraries
Steady-state and Dynamic Probe Characteristics in a Low-density Plasma

Steady-state and Dynamic Probe Characteristics in a Low-density Plasma

Date: December 1970
Creator: Bunting, William David
Description: The problem with which this investigation is concerned is that of determining the steady-state and dynamic characteristics of the admittance of a metallic probe immersed in a laboratory plasma which has the low electron densities and low electron temperatures characteristic of the ionospheric plasma. The problem is separated into three related topics: the design and production of the laboratory plasma, the measurement of the steady-state properties of dc and very low frequency probe admittance, and the study of transient ion sheath effects on radio frequency probe admittance.
Contributing Partner: UNT Libraries
Evolution of Vacancy Supersaturations in MeV Si Implanted Silicon

Evolution of Vacancy Supersaturations in MeV Si Implanted Silicon

Date: May 1999
Creator: Venezia, Vincent C.
Description: High-energy Si implantation into silicon creates a net defect distribution that is characterized by an excess of interstitials near the projected range and a simultaneous excess of vacancies closer to the surface. This defect distribution is due to the spatial separation between the distributions of interstitials and vacancies created by the forward momentum transferred from the implanted ion to the lattice atom. This dissertation investigates the evolution of the near-surface vacancy excess in MeV Si-implanted silicon both during implantation and post-implant annealing. Although previous investigations have identified a vacancy excess in MeV-implanted silicon, the investigations presented in this dissertation are unique in that they are designed to correlate the free-vacancy supersaturation with the vacancies in clusters. Free-vacancy (and interstitial) supersaturations were measured with Sb (B) dopant diffusion markers. Vacancies in clusters were profiled by Au labeling; a new technique based on the observation that Au atoms trap in the presence of open-volume defects. The experiments described in this dissertation are also unique in that they were designed to isolate the deep interstitial excess from interacting with the much shallower vacancy excess during post-implant thermal processing.
Contributing Partner: UNT Libraries
Zinc Oxide Nanoparticles for Nonlinear Bioimaging, Cell Detection and Selective Cell Destruction

Zinc Oxide Nanoparticles for Nonlinear Bioimaging, Cell Detection and Selective Cell Destruction

Access: Use of this item is restricted to the UNT Community.
Date: May 2013
Creator: Urban, Ben E.
Description: Light matter interactions have led to a great part of our current understanding of the universe. When light interacts with matter it affects the properties of both the light and the matter. Visible light, being in the region that the human eye can "see," was one of the first natural phenomenon we used to learn about our universe. The application of fundamental physics research has spilled over into other fields that were traditionally separated from physics, being considered two different sciences. Current physics research has applications in all scientific fields. By taking a more physical approach to problems in fields such as chemistry and biology, we have furthered our knowledge of both. Nanocrystals have many interesting optical properties. Furthermore, the size and properties of nanocrystals has given them applications in materials ranging from solar cells to sunscreens. By understanding and controlling their interactions with systems we can utilize them to increase our knowledge in other fields of science, such as biology. Nanocrystals exhibit optical properties superior to currently used fluorescent dyes. By replacing molecular dyes with nanoparticles we can reduce toxicity, increase resolution and have better cellular targeting abilities. They have also shown to have toxicity to cancer and antibacterial ...
Contributing Partner: UNT Libraries
Criticality in Cooperative Systems

Criticality in Cooperative Systems

Date: May 2012
Creator: Vanni, Fabio
Description: Cooperative behavior arises from the interactions of single units that globally produce a complex dynamics in which the system acts as a whole. As an archetype I refer to a flock of birds. As a result of cooperation the whole flock gets special abilities that the single individuals would not have if they were alone. This research work led to the discovery that the function of a flock, and more in general, that of cooperative systems, surprisingly rests on the occurrence of organizational collapses. In this study, I used cooperative systems based on self-propelled particle models (the flock models) which have been proved to be virtually equivalent to sociological network models mimicking the decision making processes (the decision making model). The critical region is an intermediate condition between a highly disordered state and a strong ordered one. At criticality the waiting times distribution density between two consecutive collapses shows an inverse power law form with an anomalous statistical behavior. The scientific evidences are based on measures of information theory, correlation in time and space, and fluctuation statistical analysis. In order to prove the benefit for a system to live at criticality, I made a flock system interact with another similar ...
Contributing Partner: UNT Libraries
Ion Beam Synthesis of Carbon Assisted Nanosystems in Silicon Based Substrates

Ion Beam Synthesis of Carbon Assisted Nanosystems in Silicon Based Substrates

Date: May 2011
Creator: Poudel, Prakash Raj
Description: The systematic study of the formation of β-SiC formed by low energy carbon ion (C-)implantation into Si followed by high temperature annealing is presented. The research is performed to explore the optimal annealing conditions. The formation of crystalline β-SiC is clearly observed in the sample annealed at 1100 °C for a period of 1 hr. Quantitative analysis is performed in the formation of β-SiC by the process of implantation of different carbon ion fluences of 1×1017, 2×1017, 5×1017, and 8×1017 atoms /cm2 at an ion energy of 65 keV into Si. It is observed that the average size of β-SiC crystals decreased and the amount of β-SiC crystals increased with the increase in the implanted fluences when the samples were annealed at 1100°C for 1 hr. However, it is observed that the amount of β-SiC linearly increased with the implanted fluences up to 5×1017 atoms /cm2. Above this fluence the amount of β-SiC appears to saturate. The stability of graphitic C-C bonds at 1100°C limits the growth of SiC precipitates in the sample implanted at a fluence of 8×1017 atoms /cm2 which results in the saturation behavior of SiC formation in the present study. Secondly, the carbon cluster formation process ...
Contributing Partner: UNT Libraries
Thorium and Uranium M-shell X-ray Production Cross Sections for 0.4 – 4.0 MeV Protons, 0.4 - 6.0 MeV Helium Ions, 4.5 – 11.3 MeV Carbon Ions, and 4.5 – 13.5 MeV Oxygen Ions.

Thorium and Uranium M-shell X-ray Production Cross Sections for 0.4 – 4.0 MeV Protons, 0.4 - 6.0 MeV Helium Ions, 4.5 – 11.3 MeV Carbon Ions, and 4.5 – 13.5 MeV Oxygen Ions.

Date: May 2011
Creator: Phinney, Lucas C.
Description: The M-shell x-ray production cross section for thorium and uranium have been determined for protons of energy 0.4 - 4.0 MeV, helium ions of energy 0.4 - 6.0 MeV, carbon ions of energy 4.5 - 11.3 MeV and oxygen ions of energy 4.5 - 13.5 MeV. The total cross sections and the cross sections for individual x-ray peaks in the spectrum, consisting of the following transitions Mz (M4-N2, M5-N3, M4-N3), Ma (M5-N6,7), Mb (M4-N6, M5-O3, M4- O2), and Mg (M4-O3, M5-P3, M3-N4, M3-N5), were compared to the theoretical values determined from the PWBA + OBKN and ECUSAR. The theoretical values for the carbon and oxygen ions were also modified to take into account the effects of multiple ionizations of the target atom by the heavier ions. It is shown that the results of the ECUSAR theory tend to provide better agreement with the experimental data.
Contributing Partner: UNT Libraries
Ballistic deposition: global scaling and local time series.

Ballistic deposition: global scaling and local time series.

Date: December 2003
Creator: Schwettmann, Arne
Description: Complexity can emerge from extremely simple rules. A paradigmatic example of this is the model of ballistic deposition (BD), a simple model of sedimentary rock growth. In two separate Problem-in-Lieu-of Thesis studies, BD was investigated numerically in (1+1)-D on a lattice. Both studies are combined in this document. For problem I, the global interface roughening (IR) process was studied in terms of effective scaling exponents for a generalized BD model. The model used incorporates a tunable parameter B to change the cooperation between aggregating particles. Scaling was found to depart increasingly from the predictions of Kardar-Parisi-Zhang theory both with decreasing system sizes and with increasing cooperation. For problem II, the local single column evolution during BD rock growth was studied via statistical analysis of time series. Connections were found between single column time series properties and the global IR process.
Contributing Partner: UNT Libraries
Polymer Gels: Kinetics, Dynamics Studies and Their Applications as Biomaterials

Polymer Gels: Kinetics, Dynamics Studies and Their Applications as Biomaterials

Date: December 2003
Creator: Wang, Changjie
Description: The polymer gels especially hydrogels have a very special structure and useful features such as unusual volume phase transition, compatibility with biological systems, and sensitivity to environmental stimuli (temperature, pH value, electric field, light and more), which lead to many potential applications in physical and biochemical fields. This research includes: (1) the theoretical and experimental studies of polymer gels on swelling kinetics, spinodal decomposition, and solution convection in gel matrix; (2) applications of polymer gels in wound dressing, tissue-simulating optical phantom and gel display. The kinetics of gel swelling has been theoretically analyzed by considering coupled motions of both solvent and polymer network. Analytical solutions of the solvent and the network movement are derived from collective diffusion equations for a long cylindrical and a large disk gel. Kinetics of spinodal decomposition of N-isopropylacrylamide (NIPA) polymer gel is investigated using turbidity and ultrasonic techniques. By probing movement of domains, a possible time-dependent gel structure in the spinodal decomposition region is presented. Theoretical studies of solution convection in gel matrix have been done and more analysis on dimensionless parameters is provided. To enhance the drug uptake and release capacity of silicone rubber (SR), NIPA hydrogel particles have been incorporated into a SR ...
Contributing Partner: UNT Libraries
Broad-band Light Emission From Ion Implanted Silicon Nanocrystals Via Plasmonic and Non-plasmonic Effects for Optoelectronics

Broad-band Light Emission From Ion Implanted Silicon Nanocrystals Via Plasmonic and Non-plasmonic Effects for Optoelectronics

Date: December 2012
Creator: Singh, Akhilesh K.
Description: Broad band light emission ranging from the ultraviolet (UV) to the near infrared (NIR) has been observed from silicon nanoparticles fabricated using low energy (30-45 keV) metal and non-metal ion implantation with a fluence of 5*1015 ions/cm2 in crystalline Si(100). It is found from a systematic study of the annealing carried out at certain temperatures that the spectral characteristics remains unchanged except for the enhancement of light emission intensity due to annealing. The annealing results in nucleation of metal nanoclusters in the vicinity of Si nanoparticles which enhances the emission intensity. Structural and optical characterization demonstrate that the emission originates from both highly localized defect bound excitons at the Si/Sio2 interface, as well as surface and interface traps associated with the increased surface area of the Si nanocrystals. The emission in the UV is due to interband transitions from localized excitonic states at the interface of Si/SiO2 or from the surface of Si nanocrystals. The radiative efficiency of the UV emission from the Si nanoparticles can be modified by the localized surface plasmon (LSP) interaction induced by the nucleation of silver nanoparticles with controlled annealing of the samples. The UV emission from Si nanoclusters are coupled resonantly to the LSP ...
Contributing Partner: UNT Libraries