You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Physics
Electron Transport in Bismuth at Liquid Helium Tempratures

Electron Transport in Bismuth at Liquid Helium Tempratures

Date: May 1964
Creator: Newell, James M.
Description: To obtain information on the band structure of bismuth, galvanomagnetic potentials were measured in a single crystal at liquid-helium and liquid-nitrogen temperatures. These measurements were analyzed for information on the different carriers, particularly for the existence of a high-mobility band of holes.
Contributing Partner: UNT Libraries
The Nonadditive Generalization of Klimontovich's S-Theorem for Open Systems and Boltzmann's Orthodes

The Nonadditive Generalization of Klimontovich's S-Theorem for Open Systems and Boltzmann's Orthodes

Date: August 2008
Creator: Bagci, Gokhan Baris
Description: We show that the nonadditive open systems can be studied in a consistent manner by using a generalized version of S-theorem. This new generalized S-theorem can further be considered as an indication of self-organization in nonadditive open systems as prescribed by Haken. The nonadditive S-theorem is then illustrated by using the modified Van der Pol oscillator. Finally, Tsallis entropy as an equilibrium entropy is studied by using Boltzmann's method of orthodes. This part of dissertation shows that Tsallis ensemble is on equal footing with the microcanonical, canonical and grand canonical ensembles. However, the associated entropy turns out to be Renyi entropy.
Contributing Partner: UNT Libraries
Oligonucleotide guanosine conjugated to gallium nitride nano-structures for photonics.

Oligonucleotide guanosine conjugated to gallium nitride nano-structures for photonics.

Date: August 2008
Creator: Li, Jianyou
Description: In this work, I studied the hybrid system based on self-assembled guanosine crystal (SAGC) conjugated to wide-bandgap semiconductor gallium nitride (GaN). Guanosine is one of the four bases of DNA and has the lowest oxidation energy, which favors carrier transport. It also has large dipole moment. Guanosine molecules self-assemble to ribbon-like structure in confined space. GaN surface can have positive or negative polarity depending on whether the surface is Ga- or N-terminated. I studied SAGC in confined space between two electrodes. The current-voltage characteristics can be explained very well with the theory of metal-semiconductor-metal (MSM) structure. I-V curves also show strong rectification effect, which can be explained by the intrinsic polarization along the axis of ribbon-like structure of SAGC. GaN substrate property influences the properties of SAGC. So SAGC has semiconductor properties within the confined space up to 458nm. When the gap distance gets up to 484nm, the structure with guanosine shows resistance characteristics. The photocurrent measurements show that the bandgap of SAGC is about 3.3-3.4eV and affected by substrate properties. The MSM structure based on SAGC can be used as photodetector in UV region. Then I show that the periodic structure based on GaN and SAGC can have photonic ...
Contributing Partner: UNT Libraries
Polymer Gels: Kinetics, Dynamics Studies and Their Applications as Biomaterials

Polymer Gels: Kinetics, Dynamics Studies and Their Applications as Biomaterials

Date: December 2003
Creator: Wang, Changjie
Description: The polymer gels especially hydrogels have a very special structure and useful features such as unusual volume phase transition, compatibility with biological systems, and sensitivity to environmental stimuli (temperature, pH value, electric field, light and more), which lead to many potential applications in physical and biochemical fields. This research includes: (1) the theoretical and experimental studies of polymer gels on swelling kinetics, spinodal decomposition, and solution convection in gel matrix; (2) applications of polymer gels in wound dressing, tissue-simulating optical phantom and gel display. The kinetics of gel swelling has been theoretically analyzed by considering coupled motions of both solvent and polymer network. Analytical solutions of the solvent and the network movement are derived from collective diffusion equations for a long cylindrical and a large disk gel. Kinetics of spinodal decomposition of N-isopropylacrylamide (NIPA) polymer gel is investigated using turbidity and ultrasonic techniques. By probing movement of domains, a possible time-dependent gel structure in the spinodal decomposition region is presented. Theoretical studies of solution convection in gel matrix have been done and more analysis on dimensionless parameters is provided. To enhance the drug uptake and release capacity of silicone rubber (SR), NIPA hydrogel particles have been incorporated into a SR ...
Contributing Partner: UNT Libraries
Ballistic deposition: global scaling and local time series.

Ballistic deposition: global scaling and local time series.

Date: December 2003
Creator: Schwettmann, Arne
Description: Complexity can emerge from extremely simple rules. A paradigmatic example of this is the model of ballistic deposition (BD), a simple model of sedimentary rock growth. In two separate Problem-in-Lieu-of Thesis studies, BD was investigated numerically in (1+1)-D on a lattice. Both studies are combined in this document. For problem I, the global interface roughening (IR) process was studied in terms of effective scaling exponents for a generalized BD model. The model used incorporates a tunable parameter B to change the cooperation between aggregating particles. Scaling was found to depart increasingly from the predictions of Kardar-Parisi-Zhang theory both with decreasing system sizes and with increasing cooperation. For problem II, the local single column evolution during BD rock growth was studied via statistical analysis of time series. Connections were found between single column time series properties and the global IR process.
Contributing Partner: UNT Libraries
Mechanism and the Effect of Microwave-Carbon Nanotube Interaction

Mechanism and the Effect of Microwave-Carbon Nanotube Interaction

Date: December 2005
Creator: Ye, Zhou
Description: A series of experimental results about unusual heating of carbon nanotubes by microwaves is analyzed in this dissertation. Two of vibration types, cantilever type (one end is fixed and the other one end is free), the second type is both ends are fixed, have been studied by other people. A third type of forced vibration of carbon nanotubes under an alternating electromagnetic field is examined in this paper. Heating of carbon nanotubes (CNTs) by microwaves is described in terms of nonlinear dynamics of a vibrating nanotube. Results from the model provide a way to understand several observations that have been made. It is shown that transverse vibrations of CNTs during microwave irradiation can be attributed to transverse parametric resonance, as occurs in the analysis of Melde's experiment on forced longitudinal vibrations of a stretched elastic string. For many kinds of carbon nanotubes (SWNT, DWNT, MWNT, ropes and strands) the resonant parameters are found to be located in an unstable region of the parameter space of Mathieu's equation. Third order wave equations are used to qualitatively describe the effects of phonon-phonon interactions and energy transfer from microwaves to CNTs. This result provides another way to input energy from microwaves to carbon ...
Contributing Partner: UNT Libraries
Exploration of hierarchical leadership and connectivity in neural networks in vitro.

Exploration of hierarchical leadership and connectivity in neural networks in vitro.

Date: December 2008
Creator: Ham, Michael I.
Description: Living neural networks are capable of processing information much faster than a modern computer, despite running at significantly lower clock speeds. Therefore, understanding the mechanisms neural networks utilize is an issue of substantial importance. Neuronal interaction dynamics were studied using histiotypic networks growing on microelectrode arrays in vitro. Hierarchical relationships were explored using bursting (when many neurons fire in a short time frame) dynamics, pairwise neuronal activation, and information theoretic measures. Together, these methods reveal that global network activity results from ignition by a small group of burst leader neurons, which form a primary circuit that is responsible for initiating most network-wide burst events. Phase delays between leaders and followers reveal information about the nature of the connection between the two. Physical distance from a burst leader appears to be an important factor in follower response dynamics. Information theory reveals that mutual information between neuronal pairs is also a function of physical distance. Activation relationships in developing networks were studied and plating density was found to play an important role in network connectivity development. These measures provide unique views of network connectivity and hierarchical relationship in vitro which should be included in biologically meaningful models of neural networks.
Contributing Partner: UNT Libraries
Photoelectric Emission Measurements for CVD Grown Polycrystalline Diamond Films

Photoelectric Emission Measurements for CVD Grown Polycrystalline Diamond Films

Date: August 1999
Creator: Hassan, Tarek
Description: We examined CVD grown polycrystalline diamond films having different methane concentrations to detect defects and study the possible correlation between the methane concentration used during the growth process and the defect density. SEM and Raman results show that the amorphous and sp2 carbon content of the films increases with methane concentration. Furthermore, photoelectric emission from diamond is confirmed to be a two-photon process, hence the electrons are emitted from normally unoccupied states. We found that the photoelectric yield, for our samples, decreases with the increase in methane concentration. This trend can be accounted for in two different ways: either the types of defects observed in this experiment decrease in density as the methane concentration increases; or, the defect density stays the same or increases, but the increase in methane concentration leads to an increase in the electron affinity, which reduces the overall photoelectric yield.
Contributing Partner: UNT Libraries
Work Function Study of Iridium Oxide and Molybdenum Using UPS and Simultaneous Fowler-Nordheim I-V Plots with Field Emission Energy Distributions

Work Function Study of Iridium Oxide and Molybdenum Using UPS and Simultaneous Fowler-Nordheim I-V Plots with Field Emission Energy Distributions

Date: August 1999
Creator: Bernhard, John Michael
Description: The characterization of work functions and field emission stability for molybdenum and iridium oxide coatings was examined. Single emission tips and flat samples of molybdenum and iridium oxide were prepared for characterization. The flat samples were characterized using X-ray Photoelectron Spectroscopy and X-ray diffraction to determine elemental composition, chemical shift, and crystal structure. Flat coatings of iridium oxide were also scanned by Atomic Force Microscopy to examine topography. Work functions were characterized by Ultraviolet Photoelectron Spectroscopy from the flat samples and by Field Emission Electron Distributions from the field emission tips. Field emission characterization was conducted in a custom build analytical chamber capable of measuring Field Emission Electron Distribution and Fowler-Nordheim I-V plots simultaneously to independently evaluate geometric and work function changes. Scanning Electron Microscope pictures were taken of the emission tips before and after field emission characterization to confirm geometric changes. Measurement of emission stability and work functions were the emphasis of this research. In addition, use of iridium oxide coatings to enhance emission stability was evaluated. Molybdenum and iridium oxide, IrO2, were characterized and found to have a work function of 4.6 eV and 4.2 eV by both characterization techniques, with the molybdenum value in agreement with previous ...
Contributing Partner: UNT Libraries
A Vacuum Tube for an Electrostatic Accelerator

A Vacuum Tube for an Electrostatic Accelerator

Date: June 1963
Creator: Wiley, Ralph
Description: The purpose of this study has been to design a prototype accelerating tube, to determine the correct point shape and spacing needed to produce corona current along the tube for the case of negative-point-to-positive-plane discharge, and to study the voltage-gradient characteristics of short sections of the tube when they were evacuated to a low internal pressure.
Contributing Partner: UNT Libraries