You limited your search to:

  Partner: UNT Libraries
 Decade: 2010-2019
 Degree Discipline: Physics
Nanoscale Materials Applications: Thermoelectrical, Biological, and Optical Applications with Nanomanipulation Technology

Nanoscale Materials Applications: Thermoelectrical, Biological, and Optical Applications with Nanomanipulation Technology

Date: August 2011
Creator: Lee, Kyung-Min
Description: In a sub-wavelength scale, even approaching to the atomic scale, nanoscale physics shows various novel phenomena. Since it has been named, nanoscience and nanotechnology has been employed to explore and exploit this small scale world. For example, with various functionalized features, nanowire (NW) has been making its leading position in the researches of physics, chemistry, biology, and engineering as a miniaturized building block. Its individual characteristic shows superior and unique features compared with its bulk counterpart. As one part of these research efforts and progresses, and with a part of the fulfillment of degree study, novel methodologies and device structures in nanoscale were devised and developed to show the abilities of high performing thermoelectrical, biological, and optical applications. A single β-SiC NW was characterized for its thermoelectric properties (thermal conductivity, Seebeck coefficient, and figure of merit) to compare with its bulk counterpart. The combined structure of Ag NW and ND was made to exhibit its ability of clear imaging of a fluorescent cell. And a plasmonic nanosture of silver (Ag) nanodot array and a β-SiC NW was fabricated to show a high efficient light harvesting device that allows us to make a better efficient solar cell. Novel nanomanipulation techniques were ...
Contributing Partner: UNT Libraries
The Interactions of Plasma with Low-k Dielectrics: Fundamental Damage and Protection Mechanisms

The Interactions of Plasma with Low-k Dielectrics: Fundamental Damage and Protection Mechanisms

Date: August 2011
Creator: Behera, Swayambhu Prasad
Description: Nanoporous low-k dielectrics are used for integrated circuit interconnects to reduce the propagation delays, and cross talk noise between metal wires as an alternative material for SiO2. These materials, typically organosilicate glass (OSG) films, are exposed to oxygen plasmas during photoresist stripping and related processes which substantially damage the film by abstracting carbon, incorporating O and OH, eventually leading to significantly increased k values. Systematic studies have been performed to understand the oxygen plasma-induced damage mechanisms on different low-k OSG films of various porosity and pore interconnectedness. Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy and atomic force microscopy are used to understand the damage kinetics of O radicals, ultraviolet photons and charged species, and possible ways to control the carbon loss from the film. FTIR results demonstrate that O radical present in the plasma is primarily responsible for carbon abstraction and this is governed by diffusion mechanism involving interconnected film nanopores. The loss of carbon from the film can be controlled by closing the pore interconnections, He plasma pretreatment is an effective way to control the damage at longer exposure by closing the connections between the pores.
Contributing Partner: UNT Libraries
EEG, Alpha Waves and Coherence

EEG, Alpha Waves and Coherence

Date: May 2010
Creator: Ascolani, Gianluca
Description: This thesis addresses some theoretical issues generated by the results of recent analysis of EEG time series proving the brain dynamics are driven by abrupt changes making them depart from the ordinary Poisson condition. These changes are renewal, unpredictable and non-ergodic. We refer to them as crucial events. How is it possible that this form of randomness be compatible with the generation of waves, for instance alpha waves, whose observation seems to suggest the opposite view the brain is characterized by surprisingly extended coherence? To shed light into this apparently irretrievable contradiction we propose a model based on a generalized form of Langevin equation under the influence of a periodic stimulus. We assume that there exist two different forms of time, a subjective form compatible with Poisson statistical physical and an objective form that is accessible to experimental observation. The transition from the former to the latter form is determined by the brain dynamics interpreted as emerging from the cooperative interaction among many units that, in the absence of cooperation would generate Poisson fluctuations. We call natural time the brain internal time and we make the assumption that in the natural time representation the time evolution of the EEG variable ...
Contributing Partner: UNT Libraries
Ion Beam Synthesis of Carbon Assisted Nanosystems in Silicon Based Substrates

Ion Beam Synthesis of Carbon Assisted Nanosystems in Silicon Based Substrates

Date: May 2011
Creator: Poudel, Prakash Raj
Description: The systematic study of the formation of β-SiC formed by low energy carbon ion (C-)implantation into Si followed by high temperature annealing is presented. The research is performed to explore the optimal annealing conditions. The formation of crystalline β-SiC is clearly observed in the sample annealed at 1100 °C for a period of 1 hr. Quantitative analysis is performed in the formation of β-SiC by the process of implantation of different carbon ion fluences of 1×1017, 2×1017, 5×1017, and 8×1017 atoms /cm2 at an ion energy of 65 keV into Si. It is observed that the average size of β-SiC crystals decreased and the amount of β-SiC crystals increased with the increase in the implanted fluences when the samples were annealed at 1100°C for 1 hr. However, it is observed that the amount of β-SiC linearly increased with the implanted fluences up to 5×1017 atoms /cm2. Above this fluence the amount of β-SiC appears to saturate. The stability of graphitic C-C bonds at 1100°C limits the growth of SiC precipitates in the sample implanted at a fluence of 8×1017 atoms /cm2 which results in the saturation behavior of SiC formation in the present study. Secondly, the carbon cluster formation process ...
Contributing Partner: UNT Libraries
Thorium and Uranium M-shell X-ray Production Cross Sections for 0.4 – 4.0 MeV Protons, 0.4 - 6.0 MeV Helium Ions, 4.5 – 11.3 MeV Carbon Ions, and 4.5 – 13.5 MeV Oxygen Ions.

Thorium and Uranium M-shell X-ray Production Cross Sections for 0.4 – 4.0 MeV Protons, 0.4 - 6.0 MeV Helium Ions, 4.5 – 11.3 MeV Carbon Ions, and 4.5 – 13.5 MeV Oxygen Ions.

Date: May 2011
Creator: Phinney, Lucas C.
Description: The M-shell x-ray production cross section for thorium and uranium have been determined for protons of energy 0.4 - 4.0 MeV, helium ions of energy 0.4 - 6.0 MeV, carbon ions of energy 4.5 - 11.3 MeV and oxygen ions of energy 4.5 - 13.5 MeV. The total cross sections and the cross sections for individual x-ray peaks in the spectrum, consisting of the following transitions Mz (M4-N2, M5-N3, M4-N3), Ma (M5-N6,7), Mb (M4-N6, M5-O3, M4- O2), and Mg (M4-O3, M5-P3, M3-N4, M3-N5), were compared to the theoretical values determined from the PWBA + OBKN and ECUSAR. The theoretical values for the carbon and oxygen ions were also modified to take into account the effects of multiple ionizations of the target atom by the heavier ions. It is shown that the results of the ECUSAR theory tend to provide better agreement with the experimental data.
Contributing Partner: UNT Libraries
Broad-band Light Emission From Ion Implanted Silicon Nanocrystals Via Plasmonic and Non-plasmonic Effects for Optoelectronics

Broad-band Light Emission From Ion Implanted Silicon Nanocrystals Via Plasmonic and Non-plasmonic Effects for Optoelectronics

Date: December 2012
Creator: Singh, Akhilesh K.
Description: Broad band light emission ranging from the ultraviolet (UV) to the near infrared (NIR) has been observed from silicon nanoparticles fabricated using low energy (30-45 keV) metal and non-metal ion implantation with a fluence of 5*1015 ions/cm2 in crystalline Si(100). It is found from a systematic study of the annealing carried out at certain temperatures that the spectral characteristics remains unchanged except for the enhancement of light emission intensity due to annealing. The annealing results in nucleation of metal nanoclusters in the vicinity of Si nanoparticles which enhances the emission intensity. Structural and optical characterization demonstrate that the emission originates from both highly localized defect bound excitons at the Si/Sio2 interface, as well as surface and interface traps associated with the increased surface area of the Si nanocrystals. The emission in the UV is due to interband transitions from localized excitonic states at the interface of Si/SiO2 or from the surface of Si nanocrystals. The radiative efficiency of the UV emission from the Si nanoparticles can be modified by the localized surface plasmon (LSP) interaction induced by the nucleation of silver nanoparticles with controlled annealing of the samples. The UV emission from Si nanoclusters are coupled resonantly to the LSP ...
Contributing Partner: UNT Libraries
A Non-equilibrium Approach to Scale Free Networks

A Non-equilibrium Approach to Scale Free Networks

Date: August 2012
Creator: Hollingshad, Nicholas W.
Description: Many processes and systems in nature and society can be characterized as large numbers of discrete elements that are (usually non-uniformly) interrelated. These networks were long thought to be random, but in the late 1990s, Barabási and Albert found that an underlying structure did in fact exist in many natural and technological networks that are now referred to as scale free. Since then, researchers have gained a much deeper understanding of this particular form of complexity, largely by combining graph theory, statistical physics, and advances in computing technology. This dissertation focuses on out-of-equilibrium dynamic processes as they unfold on these complex networks. Diffusion in networks of non-interacting nodes is shown to be temporally complex, while equilibrium is represented by a stable state with Poissonian fluctuations. Scale free networks achieve equilibrium very quickly compared to regular networks, and the most efficient are those with the lowest inverse power law exponent. Temporally complex diffusion also occurs in networks with interacting nodes under a cooperative decision-making model. At a critical value of the cooperation parameter, the most efficient scale free network achieves consensus almost as quickly as the equivalent all-to-all network. This finding suggests that the ubiquity of scale free networks in nature ...
Contributing Partner: UNT Libraries
Theoretical and Experimental Investigations Concerning Microgels of Varied Spherical Geometries

Theoretical and Experimental Investigations Concerning Microgels of Varied Spherical Geometries

Date: August 2012
Creator: Wahrmund, Joshua Joseph
Description: Polymer gels have been studied extensively due to their ability to simulate biological tissues and to swell or collapse reversibly in response to external stimuli. This work presents a variety of studies using poly-N-isopropylacrylamide (PNIPA) hydrogels. The projects have been carried out both in the lab of Dr. Zhibing Hu and in collaboration with others outside of UNT: (1) an analysis of the swelling kinetics of microgel spherical shells prepared using a novel design of microfluidic devices; (2) a comparison of the drug-release rates between nanoparticle structures having either core or core-with-shell (core-shell) designs; (3) an investigation into the thermodynamics of swelling for microgels of exceedingly small size.
Contributing Partner: UNT Libraries
Theoretical and Experimental Investigations of Peg Based Thermo Sensitive Hydro Microgel

Theoretical and Experimental Investigations of Peg Based Thermo Sensitive Hydro Microgel

Date: December 2012
Creator: Chi, Chenglin
Description: Poly ethylene glycol (PEG) based microgels were synthesized and investigated. The PEG microgel has the same phase transition as the traditional poly N-isopropylacrylamide (PNIPAM). As a good substitute of PNIPAM, PEG microgel exhibits many advantages: it is easier to control the lower critical solution temperature (LCST) of the microgel by changing the component of copolymers; it has a more solid spherical core-shell structure to have a double thermo sensitivity; it is straightforward to add other sensitivities such as pH, magnetic field or organic functional groups; it readily forms a photonic crystal structure exhibiting Bragg diffraction; and, most importantly, the PEG microgel is biocompatible with human body and has been approved by FDA while PNIPAM has not. PEG microgels with core-shell structure are synthesized with a two-step free radical polymerization and characterized with DLS, SLS and UV–Vis. The dynamic mechanics of melting and recrystallizing of the PEG core-shell microgel are presented and discussed. Photonic crystals of PEG microgels were synthesized and characterized. The crystal can be isolated in a thin film or a bulk column. The phase transition of PEG microgel was simulated with the mean field theory. The enthalpy and entropy of phase transition can be estimated from the best ...
Contributing Partner: UNT Libraries
Electrostatic Effects in III-V Semiconductor Based Metal-optical Nanostructures

Electrostatic Effects in III-V Semiconductor Based Metal-optical Nanostructures

Access: Use of this item is restricted to the UNT Community.
Date: May 2012
Creator: Gryczynski, Karol Grzegorz
Description: The modification of the band edge or emission energy of semiconductor quantum well light emitters due to image charge induced phenomenon is an emerging field of study. This effect observed in quantum well light emitters is critical for all metal-optics based light emitters including plasmonics, or nanometallic electrode based light emitters. This dissertation presents, for the first time, a systematic study of the image charge effect on semiconductor–metal systems. the necessity of introducing the image charge interactions is demonstrated by experiments and mathematical methods for semiconductor-metal image charge interactions are introduced and developed.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 NEXT LAST