You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Physics
Zinc Oxide Nanoparticles for Nonlinear Bioimaging, Cell Detection and Selective Cell Destruction

Zinc Oxide Nanoparticles for Nonlinear Bioimaging, Cell Detection and Selective Cell Destruction

Access: Use of this item is restricted to the UNT Community.
Date: May 2013
Creator: Urban, Ben E.
Description: Light matter interactions have led to a great part of our current understanding of the universe. When light interacts with matter it affects the properties of both the light and the matter. Visible light, being in the region that the human eye can "see," was one of the first natural phenomenon we used to learn about our universe. The application of fundamental physics research has spilled over into other fields that were traditionally separated from physics, being considered two different sciences. Current physics research has applications in all scientific fields. By taking a more physical approach to problems in fields such as chemistry and biology, we have furthered our knowledge of both. Nanocrystals have many interesting optical properties. Furthermore, the size and properties of nanocrystals has given them applications in materials ranging from solar cells to sunscreens. By understanding and controlling their interactions with systems we can utilize them to increase our knowledge in other fields of science, such as biology. Nanocrystals exhibit optical properties superior to currently used fluorescent dyes. By replacing molecular dyes with nanoparticles we can reduce toxicity, increase resolution and have better cellular targeting abilities. They have also shown to have toxicity to cancer and antibacterial ...
Contributing Partner: UNT Libraries
A New Approach for Transition Metal Free Magnetic Sic: Defect Induced Magnetism After Self-ion Implantation

A New Approach for Transition Metal Free Magnetic Sic: Defect Induced Magnetism After Self-ion Implantation

Date: May 2013
Creator: Kummari, Venkata Chandra Sekhar
Description: SiC has become an attractive wide bandgap semiconductor due to its unique physical and electronic properties and is widely used in high temperature, high frequency, high power and radiation resistant applications. SiC has been used as an alternative to Si in harsh environments such as in the oil industry, nuclear power systems, aeronautical, and space applications. SiC is also known for its polytypism and among them 3C-SiC, 4H-SiC and 6H-SiC are the most common polytypes used for research purposes. Among these polytypes 4H-SiC is gaining importance due to its easy commercial availability with a large bandgap of 3.26 eV at room temperature. Controlled creation of defects in materials is an approach to modify the electronic properties in a way that new functionality may result. SiC is a promising candidate for defect-induced magnetism on which spintronic devices could be developed. The defects considered are of room temperature stable vacancy types, eliminating the need for magnetic impurities, which easily diffuse at room temperature. Impurity free vacancy type defects can be created by implanting the host atoms of silicon or carbon. The implantation fluence determines the defect density, which is a critical parameter for defect induced magnetism. Therefore, we have studied the influence ...
Contributing Partner: UNT Libraries
Criticality in Cooperative Systems

Criticality in Cooperative Systems

Date: May 2012
Creator: Vanni, Fabio
Description: Cooperative behavior arises from the interactions of single units that globally produce a complex dynamics in which the system acts as a whole. As an archetype I refer to a flock of birds. As a result of cooperation the whole flock gets special abilities that the single individuals would not have if they were alone. This research work led to the discovery that the function of a flock, and more in general, that of cooperative systems, surprisingly rests on the occurrence of organizational collapses. In this study, I used cooperative systems based on self-propelled particle models (the flock models) which have been proved to be virtually equivalent to sociological network models mimicking the decision making processes (the decision making model). The critical region is an intermediate condition between a highly disordered state and a strong ordered one. At criticality the waiting times distribution density between two consecutive collapses shows an inverse power law form with an anomalous statistical behavior. The scientific evidences are based on measures of information theory, correlation in time and space, and fluctuation statistical analysis. In order to prove the benefit for a system to live at criticality, I made a flock system interact with another similar ...
Contributing Partner: UNT Libraries
Broad-band Light Emission From Ion Implanted Silicon Nanocrystals Via Plasmonic and Non-plasmonic Effects for Optoelectronics

Broad-band Light Emission From Ion Implanted Silicon Nanocrystals Via Plasmonic and Non-plasmonic Effects for Optoelectronics

Date: December 2012
Creator: Singh, Akhilesh K.
Description: Broad band light emission ranging from the ultraviolet (UV) to the near infrared (NIR) has been observed from silicon nanoparticles fabricated using low energy (30-45 keV) metal and non-metal ion implantation with a fluence of 5*1015 ions/cm2 in crystalline Si(100). It is found from a systematic study of the annealing carried out at certain temperatures that the spectral characteristics remains unchanged except for the enhancement of light emission intensity due to annealing. The annealing results in nucleation of metal nanoclusters in the vicinity of Si nanoparticles which enhances the emission intensity. Structural and optical characterization demonstrate that the emission originates from both highly localized defect bound excitons at the Si/Sio2 interface, as well as surface and interface traps associated with the increased surface area of the Si nanocrystals. The emission in the UV is due to interband transitions from localized excitonic states at the interface of Si/SiO2 or from the surface of Si nanocrystals. The radiative efficiency of the UV emission from the Si nanoparticles can be modified by the localized surface plasmon (LSP) interaction induced by the nucleation of silver nanoparticles with controlled annealing of the samples. The UV emission from Si nanoclusters are coupled resonantly to the LSP ...
Contributing Partner: UNT Libraries
Theoretical and Experimental Investigations of Peg Based Thermo Sensitive Hydro Microgel

Theoretical and Experimental Investigations of Peg Based Thermo Sensitive Hydro Microgel

Date: December 2012
Creator: Chi, Chenglin
Description: Poly ethylene glycol (PEG) based microgels were synthesized and investigated. The PEG microgel has the same phase transition as the traditional poly N-isopropylacrylamide (PNIPAM). As a good substitute of PNIPAM, PEG microgel exhibits many advantages: it is easier to control the lower critical solution temperature (LCST) of the microgel by changing the component of copolymers; it has a more solid spherical core-shell structure to have a double thermo sensitivity; it is straightforward to add other sensitivities such as pH, magnetic field or organic functional groups; it readily forms a photonic crystal structure exhibiting Bragg diffraction; and, most importantly, the PEG microgel is biocompatible with human body and has been approved by FDA while PNIPAM has not. PEG microgels with core-shell structure are synthesized with a two-step free radical polymerization and characterized with DLS, SLS and UV–Vis. The dynamic mechanics of melting and recrystallizing of the PEG core-shell microgel are presented and discussed. Photonic crystals of PEG microgels were synthesized and characterized. The crystal can be isolated in a thin film or a bulk column. The phase transition of PEG microgel was simulated with the mean field theory. The enthalpy and entropy of phase transition can be estimated from the best ...
Contributing Partner: UNT Libraries
Microwave Cavity Method for Measuring Plasma Properties

Microwave Cavity Method for Measuring Plasma Properties

Date: August 1969
Creator: Freeman, Ronald H.
Description: This discussion is concerned primarily with communications blackout during spacecraft entry into a planetary atmosphere. The gas in the shock layer, between shock wave and vehicle surface, ionizes from the intense heating which takes place in the bow shock wave and a viscous region of high gas enthalpy. This ionization may persist throughout the subsequent flow over the vehicle and into the wake, thus completely engulfing the vehicle and its communications elements. The problem will be to simulate a plasma model that will be of interest for hypervelocity reentry vehicles and to provide meaningful expressions for the various plasma parameters of interest (electron density, electron temperature, collision frequency, etc.) in terms of the microwave measurables (amplitude, phase shifts, frequency shifts, polarization, etc.)
Contributing Partner: UNT Libraries
A Vacuum Tube for an Electrostatic Generator

A Vacuum Tube for an Electrostatic Generator

Date: August 1966
Creator: Pool, John Reginald
Description: The purpose of this study has been to construct two accelerating tubes with small beam apertures for the Van de Graaff, modifying the prototype tube designed and tested by Wiley (20), to design and construct a vacuum system for evacuating the tubes, and to determine the characteristics of the tube under operating conditions while installed in the generator.
Contributing Partner: UNT Libraries
The Diurnal Variation of Cosmic Radiation

The Diurnal Variation of Cosmic Radiation

Date: August 1965
Creator: Fowler, Brooks C.
Description: The primary purpose of this investigation was to study the diurnal variation of cosmic-ray intensity.
Contributing Partner: UNT Libraries
Design and Testing of a Positive Ion Accelerator and Necessary Vacuum System

Design and Testing of a Positive Ion Accelerator and Necessary Vacuum System

Date: August 1953
Creator: McKay, Vern A.
Description: This thesis is a study of the design and testing of a positive ion accelerator and necessary vacuum system.
Contributing Partner: UNT Libraries
Electrical Conductivity in Thin Films

Electrical Conductivity in Thin Films

Date: May 1973
Creator: Meyer, Frederick Otto
Description: This thesis deals with electrical conductivity in thin films. Classical and quantum size effects in conductivity are discussed including some experimental evidence of quantum size effects. The component conductivity along the applied electric field of a thin film in a transverse magnetic field is developed in a density matrix method.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 5 NEXT LAST