### Compactness and Equivalent Notions

**Date:**August 1967

**Creator:**Bell, Wayne Charles

**Description:**One of the classic theorems concerning the real numbers states that every open cover of a closed and bounded subset of the real line contains a finite subcover. Compactness is an abstraction of that notion, and there are several ideas concerning it which are equivalent and many which are similar. The purpose of this paper is to synthesize the more important of these ideas. This synthesis is accomplished by demonstrating either situations in which two ordinarily different conditions are equivalent or combinations of two or more properties which will guarantee a third.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc130821/

### The Comparability of Cardinals

**Date:**May 1964

**Creator:**Owen, Aubrey P.

**Description:**The purpose of this composition is to develop a rigorous, axiomatic proof of the comparability of the cardinals of infinite sets.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc130514/

### A Comparative Study of Non Linear Conjugate Gradient Methods

**Date:**August 2013

**Creator:**Pathak, Subrat

**Description:**We study the development of nonlinear conjugate gradient methods, Fletcher Reeves (FR) and Polak Ribiere (PR). FR extends the linear conjugate gradient method to nonlinear functions by incorporating two changes, for the step length αk a line search is performed and replacing the residual, rk (rk=b-Axk) by the gradient of the nonlinear objective function. The PR method is equivalent to FR method for exact line searches and when the underlying quadratic function is strongly convex. The PR method is basically a variant of FR and primarily differs from it in the choice of the parameter βk. On applying the nonlinear Rosenbrock function to the MATLAB code for the FR and the PR algorithms we observe that the performance of PR method (k=29) is far better than the FR method (k=42). But, we observe that when the MATLAB codes are applied to general nonlinear functions, specifically functions whose minimum is a large negative number not close to zero and the iterates too are large values far off from zero the PR algorithm does not perform well. This problem with the PR method persists even if we run the PR algorithm for more iterations or with an initial guess closer to the ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc283864/

### Comparison of Some Mappings in Topology

**Date:**January 1964

**Creator:**Aslan, Farhad

**Description:**The main purpose of this paper is the study of transformations in topological space and relationships between special types of transformations.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc108253/

### Complemented Subspaces of Bounded Linear Operators

**Date:**August 2003

**Creator:**Bahreini Esfahani, Manijeh

**Description:**For many years mathematicians have been interested in the problem of whether an operator ideal is complemented in the space of all bounded linear operators. In this dissertation the complementation of various classes of operators in the space of all bounded linear operators is considered. This paper begins with a preliminary discussion of linear bounded operators as well as operator ideals. Let L(X, Y ) be a Banach space of all bounded linear operator between Banach spaces X and Y , K(X, Y ) be the space of all compact operators, and W(X, Y ) be the space of all weakly compact operators. We denote space all operator ideals by O.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4349/

### Completely 0-Simple Semigroups

**Date:**August 1968

**Creator:**Barker, Bruce W.

**Description:**The purpose of this thesis is to explore some of the characteristics of 0-simple semigroups and completely 0-simple semigroups.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc130974/

### Completeness Axioms in an Ordered Field

**Date:**December 1971

**Creator:**Carter, Louis Marie

**Description:**The purpose of this paper was to prove the equivalence of the following completeness axioms. This purpose was carried out by first defining an ordered field and developing some basic theorems relative to it, then proving that lim [(u+u)*]^n = z (where u is the multiplicative identity, z is the additive identity, and * indicates the multiplicative inverse of an element), and finally proving the equivalence of the five axioms.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc131462/

### Completing the Space of Step Functions

**Date:**August 1972

**Creator:**Massey, Linda K.

**Description:**In this thesis a study is made of the space X of all step functions on [0,1]. This investigation includes determining a completion space, X*, for the incomplete space X, defining integration for X*, and proving some theorems about integration in X*.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc164014/

### A Computation of Partial Isomorphism Rank on Ordinal Structures

**Date:**August 2006

**Creator:**Bryant, Ross

**Description:**We compute the partial isomorphism rank, in the sense Scott and Karp, of a pair of ordinal structures using an Ehrenfeucht-Fraisse game. A complete formula is proven by induction given any two arbitrary ordinals written in Cantor normal form.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc5387/

### The Computation of Ultrapowers by Supercompactness Measures

**Date:**August 1999

**Creator:**Smith, John C.

**Description:**The results from this dissertation are a computation of ultrapowers by supercompactness measures and concepts related to such measures. The second chapter gives an overview of the basic ideas required to carry out the computations. Included are preliminary ideas connected to measures, and the supercompactness measures. Order type results are also considered in this chapter. In chapter III we give an alternate characterization of 2 using the notion of iterated ordinal measures. Basic facts related to this characterization are also considered here. The remaining chapters are devoted to finding bounds fwith arguments taking place both inside and outside the ultrapowers. Conditions related to the upper bound are given in chapter VI.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc2201/