You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Mathematics
The Analytical Development of the Trigonometric Functions

The Analytical Development of the Trigonometric Functions

Date: 1951
Creator: Mackey, Pearl Cherrington
Description: This thesis is a study of the analytical development of the trigonometric functions.
Contributing Partner: UNT Libraries
Applications in Fixed Point Theory

Applications in Fixed Point Theory

Date: December 2005
Creator: Farmer, Matthew Ray
Description: Banach's contraction principle is probably one of the most important theorems in fixed point theory. It has been used to develop much of the rest of fixed point theory. Another key result in the field is a theorem due to Browder, Göhde, and Kirk involving Hilbert spaces and nonexpansive mappings. Several applications of Banach's contraction principle are made. Some of these applications involve obtaining new metrics on a space, forcing a continuous map to have a fixed point, and using conditions on the boundary of a closed ball in a Banach space to obtain a fixed point. Finally, a development of the theorem due to Browder et al. is given with Hilbert spaces replaced by uniformly convex Banach spaces.
Contributing Partner: UNT Libraries
An Approximate Solution to the Dirichlet Problem

An Approximate Solution to the Dirichlet Problem

Date: August 1964
Creator: Redwine, Edward William
Description: In the category of mathematics called partial differential equations there is a particular type of problem called the Dirichlet problem. Proof is given in many partial differential equation books that every Dirichlet problem has one and only one solution. The explicit solution is very often not easily determined, so that a method for approximating the solution at certain points becomes desirable. The purpose of this paper is to present and investigate one such method.
Contributing Partner: UNT Libraries
Around the Fibonacci Numeration System

Around the Fibonacci Numeration System

Date: May 2007
Creator: Edson, Marcia Ruth
Description: Let 1, 2, 3, 5, 8, … denote the Fibonacci sequence beginning with 1 and 2, and then setting each subsequent number to the sum of the two previous ones. Every positive integer n can be expressed as a sum of distinct Fibonacci numbers in one or more ways. Setting R(n) to be the number of ways n can be written as a sum of distinct Fibonacci numbers, we exhibit certain regularity properties of R(n), one of which is connected to the Euler φ-function. In addition, using a theorem of Fine and Wilf, we give a formula for R(n) in terms of binomial coefficients modulo two.
Contributing Partner: UNT Libraries
Aspects of Universality in Function Iteration

Aspects of Universality in Function Iteration

Date: December 1991
Creator: Taylor, John (John Allen)
Description: This work deals with some aspects of universal topological and metric dynamic behavior of iterated maps of the interval.
Contributing Partner: UNT Libraries
Atmospheric Gusts and Their Effect on Aircraft

Atmospheric Gusts and Their Effect on Aircraft

Date: August 1958
Creator: Walling, Waunnetta Keene
Description: This thesis investigates atmospheric gusts and their effect on aircraft.
Contributing Partner: UNT Libraries
Automorphism Groups

Automorphism Groups

Date: August 1965
Creator: Edwards, Donald Eugene
Description: This paper will be concerned mainly with automorphisms of groups. The concept of a group endomorphism will be used at various points in this paper.
Contributing Partner: UNT Libraries
Basic Fourier Transforms

Basic Fourier Transforms

Date: January 1962
Creator: Cumbie, James Randolph
Description: The purpose of this paper is to develop some of the more basic Fourier transforms which are the outgrowth of the Fourier theorem. Although often approached from the stand-point of the series, this paper will approach the theorem from the standpoint of the integral.
Contributing Partner: UNT Libraries
Borel Determinacy and Metamathematics

Borel Determinacy and Metamathematics

Date: December 2001
Creator: Bryant, Ross
Description: Borel determinacy states that if G(T;X) is a game and X is Borel, then G(T;X) is determined. Proved by Martin in 1975, Borel determinacy is a theorem of ZFC set theory, and is, in fact, the best determinacy result in ZFC. However, the proof uses sets of high set theoretic type (N1 many power sets of ω). Friedman proved in 1971 that these sets are necessary by showing that the Axiom of Replacement is necessary for any proof of Borel Determinacy. To prove this, Friedman produces a model of ZC and a Borel set of Turing degrees that neither contains nor omits a cone; so by another theorem of Martin, Borel Determinacy is not a theorem of ZC. This paper contains three main sections: Martin's proof of Borel Determinacy; a simpler example of Friedman's result, namely, (in ZFC) a coanalytic set of Turing degrees that neither contains nor omits a cone; and finally, the Friedman result.
Contributing Partner: UNT Libraries
Borel Sets and Baire Functions

Borel Sets and Baire Functions

Date: January 1970
Creator: Wemple, Fred W.
Description: This paper examines the relationship between Borel sets and Baire functions.
Contributing Partner: UNT Libraries