You limited your search to:

  Partner: UNT Libraries
 Decade: 2000-2009
 Degree Discipline: Mathematics
 Collection: UNT Theses and Dissertations
A Constructive Method for Finding Critical Point of the Ginzburg-Landau Energy Functional

A Constructive Method for Finding Critical Point of the Ginzburg-Landau Energy Functional

Date: August 2008
Creator: Kazemi, Parimah
Description: In this work I present a constructive method for finding critical points of the Ginzburg-Landau energy functional using the method of Sobolev gradients. I give a description of the construction of the Sobolev gradient and obtain convergence results for continuous steepest descent with this gradient. I study the Ginzburg-Landau functional with magnetic field and the Ginzburg-Landau functional without magnetic field. I then present the numerical results I obtained by using steepest descent with the discretized Sobolev gradient.
Contributing Partner: UNT Libraries
A Detailed Proof of the Prime Number Theorem for Arithmetic Progressions

A Detailed Proof of the Prime Number Theorem for Arithmetic Progressions

Date: May 2004
Creator: Vlasic, Andrew
Description: We follow a research paper that J. Elstrodt published in 1998 to prove the Prime Number Theorem for arithmetic progressions. We will review basic results from Dirichlet characters and L-functions. Furthermore, we establish a weak version of the Wiener-Ikehara Tauberian Theorem, which is an essential tool for the proof of our main result.
Contributing Partner: UNT Libraries
Determining Properties of Synaptic Structure in a Neural Network through Spike Train Analysis

Determining Properties of Synaptic Structure in a Neural Network through Spike Train Analysis

Date: May 2007
Creator: Brooks, Evan
Description: A "complex" system typically has a relatively large number of dynamically interacting components and tends to exhibit emergent behavior that cannot be explained by analyzing each component separately. A biological neural network is one example of such a system. A multi-agent model of such a network is developed to study the relationships between a network's structure and its spike train output. Using this model, inferences are made about the synaptic structure of networks through cluster analysis of spike train summary statistics A complexity measure for the network structure is also presented which has a one-to-one correspondence with the standard time series complexity measure sample entropy.
Contributing Partner: UNT Libraries
Dimension spectrum and graph directed Markov systems.

Dimension spectrum and graph directed Markov systems.

Access: Use of this item is restricted to the UNT Community.
Date: May 2006
Creator: Ghenciu, Eugen Andrei
Description: In this dissertation we study graph directed Markov systems (GDMS) and limit sets associated with these systems. Given a GDMS S, by the Hausdorff dimension spectrum of S we mean the set of all positive real numbers which are the Hausdorff dimension of the limit set generated by a subsystem of S. We say that S has full Hausdorff dimension spectrum (full HD spectrum), if the dimension spectrum is the interval [0, h], where h is the Hausdorff dimension of the limit set of S. We give necessary conditions for a finitely primitive conformal GDMS to have full HD spectrum. A GDMS is said to be regular if the Hausdorff dimension of its limit set is also the zero of the topological pressure function. We show that every number in the Hausdorff dimension spectrum is the Hausdorff dimension of a regular subsystem. In the particular case of a conformal iterated function system we show that the Hausdorff dimension spectrum is compact. We introduce several new systems: the nearest integer GDMS, the Gauss-like continued fraction system, and the Renyi-like continued fraction system. We prove that these systems have full HD spectrum. A special attention is given to the backward continued fraction ...
Contributing Partner: UNT Libraries
Dimensions in random constructions.

Dimensions in random constructions.

Date: May 2002
Creator: Berlinkov, Artemi
Description: We consider random fractals generated by random recursive constructions, prove zero-one laws concerning their dimensions and find their packing and Minkowski dimensions. Also we investigate the packing measure in corresponding dimension. For a class of random distribution functions we prove that their packing and Hausdorff dimensions coincide.
Contributing Partner: UNT Libraries
Dynamics, Thermodynamic formalism and Perturbations of Transcendental Entire Functions of Finite Singular Type

Dynamics, Thermodynamic formalism and Perturbations of Transcendental Entire Functions of Finite Singular Type

Date: May 2005
Creator: Coiculescu, Ion
Description: In this dissertation, we study the dynamics, fractal geometry and the topology of the Julia set of functions in the family H which is a set in the class S, the Speiser class of entire transcendental functions which have only finitely many singular values. One can think of a function from H as a generalized expanding function from the cosh family. We shall build a version of thermodynamic formalism for functions in H and we shall show among others, the existence and uniqueness of a conformal measure. Then we prove a Bowen's type formula, i.e. we show that the Hausdorff dimension of the set of returning points, is the unique zero of the pressure function. We shall also study conjugacies in the family H, perturbation of functions in the family and related dynamical properties. We define Perron-Frobenius operators for some functions naturally associated with functions in the family H and then, using fundamental properties of these operators, we shall prove the important result that the Hausdorff dimension of the subset of returning points depends analytically on the parameter taken from a small open subset of the n-dimensional parameter space.
Contributing Partner: UNT Libraries
Examples and Applications of Infinite Iterated Function Systems

Examples and Applications of Infinite Iterated Function Systems

Date: August 2000
Creator: Hanus, Pawel Grzegorz
Description: The aim of this work is the study of infinite conformal iterated function systems. More specifically, we investigate some properties of a limit set J associated to such system, its Hausdorff and packing measure and Hausdorff dimension. We provide necessary and sufficient conditions for such systems to be bi-Lipschitz equivalent. We use the concept of scaling functions to obtain some result about 1-dimensional systems. We discuss particular examples of infinite iterated function systems derived from complex continued fraction expansions with restricted entries. Each system is obtained from an infinite number of contractions. We show that under certain conditions the limit sets of such systems possess zero Hausdorff measure and positive finite packing measure. We include an algorithm for an approximation of the Hausdorff dimension of limit sets. One numerical result is presented. In this thesis we also explore the concept of positively recurrent function. We use iterated function systems to construct a natural, wide class of such functions that have strong ergodic properties.
Contributing Partner: UNT Libraries
Exhaustivity, continuity, and strong additivity in topological Riesz spaces.

Exhaustivity, continuity, and strong additivity in topological Riesz spaces.

Access: Use of this item is restricted to the UNT Community.
Date: May 2004
Creator: Muller, Kimberly O.
Description: In this paper, exhaustivity, continuity, and strong additivity are studied in the setting of topological Riesz spaces. Of particular interest is the link between strong additivity and exhaustive elements of Dedekind s-complete Banach lattices. There is a strong connection between the Diestel-Faires Theorem and the Meyer-Nieberg Lemma in this setting. Also, embedding properties of Banach lattices are linked to the notion of strong additivity. The Meyer-Nieberg Lemma is extended to the setting of topological Riesz spaces and uniform absolute continuity and uniformly exhaustive elements are studied in this setting. Counterexamples are provided to show that the Vitali-Hahn-Saks Theorem and the Brooks-Jewett Theorem cannot be extended to submeasures or to the setting of Banach lattices.
Contributing Partner: UNT Libraries
Generic Algebras and Kazhdan-Lusztig Theory for Monomial Groups

Generic Algebras and Kazhdan-Lusztig Theory for Monomial Groups

Access: Use of this item is restricted to the UNT Community.
Date: May 2006
Creator: Alhaddad, Shemsi I.
Description: The Iwahori-Hecke algebras of Coxeter groups play a central role in the study of representations of semisimple Lie-type groups. An important tool is the combinatorial approach to representations of Iwahori-Hecke algebras introduced by Kazhdan and Lusztig in 1979. In this dissertation, I discuss a generalization of the Iwahori-Hecke algebra of the symmetric group that is instead based on the complex reflection group G(r,1,n). Using the analogues of Kazhdan and Lusztig's R-polynomials, I show that this algebra determines a partial order on G(r,1,n) that generalizes the Chevalley-Bruhat order on the symmetric group. I also consider possible analogues of Kazhdan-Lusztig polynomials.
Contributing Partner: UNT Libraries
The Global Structure of Iterated Function Systems

The Global Structure of Iterated Function Systems

Date: May 2009
Creator: Snyder, Jason Edward
Description: I study sets of attractors and non-attractors of finite iterated function systems. I provide examples of compact sets which are attractors of iterated function systems as well as compact sets which are not attractors of any iterated function system. I show that the set of all attractors is a dense Fs set and the space of all non-attractors is a dense Gd set it the space of all non-empty compact subsets of a space X. I also investigate the small trans-finite inductive dimension of the space of all attractors of iterated function systems generated by similarity maps on [0,1].
Contributing Partner: UNT Libraries