## You limited your search to:

**Partner:**UNT Libraries

**Decade:**1990-1999

**Degree Discipline:**Mathematics

### Aspects of Universality in Function Iteration

**Date:**December 1991

**Creator:**Taylor, John (John Allen)

**Description:**This work deals with some aspects of universal topological and metric dynamic behavior of iterated maps of the interval.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc278799/

### The Computation of Ultrapowers by Supercompactness Measures

**Date:**August 1999

**Creator:**Smith, John C.

**Description:**The results from this dissertation are a computation of ultrapowers by supercompactness measures and concepts related to such measures. The second chapter gives an overview of the basic ideas required to carry out the computations. Included are preliminary ideas connected to measures, and the supercompactness measures. Order type results are also considered in this chapter. In chapter III we give an alternate characterization of 2 using the notion of iterated ordinal measures. Basic facts related to this characterization are also considered here. The remaining chapters are devoted to finding bounds fwith arguments taking place both inside and outside the ultrapowers. Conditions related to the upper bound are given in chapter VI.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc2201/

### The Continuous Wavelet Transform and the Wave Front Set

**Date:**December 1993

**Creator:**Navarro, Jaime

**Description:**In this paper I formulate an explicit wavelet transform that, applied to any distribution in S^1(R^2), yields a function on phase space whose high-frequency singularities coincide precisely with the wave front set of the distribution. This characterizes the wave front set of a distribution in terms of the singularities of its wavelet transform with respect to a suitably chosen basic wavelet.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc277762/

### Countable Additivity, Exhaustivity, and the Structure of Certain Banach Lattices

**Date:**August 1999

**Creator:**Huff, Cheryl Rae

**Description:**The notion of uniform countable additivity or uniform absolute continuity is present implicitly in the Lebesgue Dominated Convergence Theorem and explicitly in the Vitali-Hahn-Saks and Nikodym Theorems, respectively. V. M. Dubrovsky studied the connection between uniform countable additivity and uniform absolute continuity in a series of papers, and Bartle, Dunford, and Schwartz established a close relationship between uniform countable additivity in ca(Σ) and operator theory for the classical continuous function spaces C(K). Numerous authors have worked extensively on extending and generalizing the theorems of the preceding authors. Specifically, we mention Bilyeu and Lewis as well as Brooks and Drewnowski, whose efforts molded the direction and focus of this paper. This paper is a study of the techniques used by Bell, Bilyeu, and Lewis in their paper on uniform exhaustivity and Banach lattices to present a Banach lattice version of two important and powerful results in measure theory by Brooks and Drewnowski. In showing that the notions of exhaustivity and continuity take on familiar forms in certain Banach lattices of measures they show that these important measure theory results follow as corollaries of the generalized Banach lattice versions. This work uses their template to generalize results established by Bator, Bilyeu, and ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc278330/

### Cycles and Cliques in Steinhaus Graphs

**Date:**December 1994

**Creator:**Lim, Daekeun

**Description:**In this dissertation several results in Steinhaus graphs are investigated. First under some further conditions imposed on the induced cycles in steinhaus graphs, the order of induced cycles in Steinhaus graphs is at most [(n+3)/2]. Next the results of maximum clique size in Steinhaus graphs are used to enumerate the Steinhaus graphs having maximal cliques. Finally the concept of jumbled graphs and Posa's Lemma are used to show that almost all Steinhaus graphs are Hamiltonian.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc278469/

### Existence of Many Sign Changing Non Radial Solutions for Semilinear Elliptic Problems on Annular Domains

**Date:**August 1998

**Creator:**Finan, Marcel Basil

**Description:**The aim of this work is the study of the existence and multiplicity of sign changing nonradial solutions to elliptic boundary value problems on annular domains.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc278251/

### A Generalization of Sturmian Sequences: Combinatorial Structure and Transcendence

**Date:**August 1998

**Creator:**Risley, Rebecca N.

**Description:**We investigate a class of minimal sequences on a finite alphabet Ak = {1,2,...,k} having (k - 1)n + 1 distinct subwords of length n. These sequences, originally defined by P. Arnoux and G. Rauzy, are a natural generalization of binary Sturmian sequences. We describe two simple combinatorial algorithms for constructing characteristic Arnoux-Rauzy sequences (one of which is new even in the Sturmian case). Arnoux-Rauzy sequences arising from fixed points of primitive morphisms are characterized by an underlying periodic structure. We show that every Arnoux-Rauzy sequence contains arbitrarily large subwords of the form V^2+ε and, in the Sturmian case, arbitrarily large subwords of the form V^3+ε. Finally, we prove that an irrational number whose base b-digit expansion is an Arnoux-Rauzy sequence is transcendental.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc278440/

### Minimality of the Special Linear Groups

**Date:**December 1997

**Creator:**Hayes, Diana Margaret

**Description:**Let F denote the field of real numbers, complex numbers, or a finite algebraic extension of the p-adic field. We prove that the special linear group SLn(F) with the usual topology induced by F is a minimal topological group. This is accomplished by first proving the minimality of the upper triangular group in SLn(F). The proof for the upper triangular group uses an induction argument on a chain of upper triangular subgroups and relies on general results for locally compact topological groups, quotient groups, and subgroups. Minimality of SLn(F) is concluded by appealing to the associated Lie group decomposition as the product of a compact group and an upper triangular group. We also prove the universal minimality of homeomorphism groups of one dimensional manifolds, and we give a new simple proof of the universal minimality of S∞.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc279280/

### Multifractal Analysis of Parabolic Rational Maps

**Date:**August 1998

**Creator:**Byrne, Jesse William

**Description:**The investigation of the multifractal spectrum of the equilibrium measure for a parabolic rational map with a Lipschitz continuous potential, φ, which satisfies sup φ < P(φ) x∈J(T) is conducted. More specifically, the multifractal spectrum or spectrum of singularities, f(α) is studied.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc278398/

### Multifractal Measures

**Date:**May 1994

**Creator:**Olsen, Lars

**Description:**The purpose of this dissertation is to introduce a natural and unifying multifractal formalism which contains the above mentioned multifractal parameters, and gives interesting results for a large class of natural measures. In Part 2 we introduce the proposed multifractal formalism and study it properties. We also show that this multifractal formalism gives natural and interesting results when applied to (nonrandom) graph directed self-similar measures in Rd and "cookie-cutter" measures in R. In Part 3 we use the multifractal formalism introduced in Part 2 to give a detailed discussion of the multifractal structure of random (and hence, as a special case, non-random) graph directed self-similar measures in R^d.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc279084/