You limited your search to:

  Partner: UNT Libraries
 Decade: 1990-1999
 Degree Discipline: Mathematics
Applications of Rapidly Mixing Markov Chains to Problems in Graph Theory

Applications of Rapidly Mixing Markov Chains to Problems in Graph Theory

Date: August 1993
Creator: Simmons, Dayton C. (Dayton Cooper)
Description: In this dissertation the results of Jerrum and Sinclair on the conductance of Markov chains are used to prove that almost all generalized Steinhaus graphs are rapidly mixing and an algorithm for the uniform generation of 2 - (4k + 1,4,1) cyclic Mendelsohn designs is developed.
Contributing Partner: UNT Libraries
Aspects of Universality in Function Iteration

Aspects of Universality in Function Iteration

Date: December 1991
Creator: Taylor, John (John Allen)
Description: This work deals with some aspects of universal topological and metric dynamic behavior of iterated maps of the interval.
Contributing Partner: UNT Libraries
Characterizations of Some Combinatorial Geometries

Characterizations of Some Combinatorial Geometries

Date: August 1992
Creator: Yoon, Young-jin
Description: We give several characterizations of partition lattices and projective geometries. Most of these characterizations use characteristic polynomials. A geometry is non—splitting if it cannot be expressed as the union of two of its proper flats. A geometry G is upper homogeneous if for all k, k = 1, 2, ... , r(G), and for every pair x, y of flats of rank k, the contraction G/x is isomorphic to the contraction G/y. Given a signed graph, we define a corresponding signed—graphic geometry. We give a characterization of supersolvable signed graphs. Finally, we give the following characterization of non—splitting supersolvable signed-graphic geometries : If a non-splitting supersolvable ternary geometry does not contain the Reid geometry as a subgeometry, then it is signed—graphic.
Contributing Partner: UNT Libraries
The Computation of Ultrapowers by Supercompactness Measures

The Computation of Ultrapowers by Supercompactness Measures

Date: August 1999
Creator: Smith, John C.
Description: The results from this dissertation are a computation of ultrapowers by supercompactness measures and concepts related to such measures. The second chapter gives an overview of the basic ideas required to carry out the computations. Included are preliminary ideas connected to measures, and the supercompactness measures. Order type results are also considered in this chapter. In chapter III we give an alternate characterization of 2 using the notion of iterated ordinal measures. Basic facts related to this characterization are also considered here. The remaining chapters are devoted to finding bounds fwith arguments taking place both inside and outside the ultrapowers. Conditions related to the upper bound are given in chapter VI.
Contributing Partner: UNT Libraries
Continuous, Nowhere-Differentiable Functions with no Finite or Infinite One-Sided Derivative Anywhere

Continuous, Nowhere-Differentiable Functions with no Finite or Infinite One-Sided Derivative Anywhere

Date: December 1994
Creator: Lee, Jae S. (Jae Seung)
Description: In this paper, we study continuous functions with no finite or infinite one-sided derivative anywhere. In 1925, A. S. Beskovitch published an example of such a function. Since then we call them Beskovitch functions. This construction is presented in chapter 2, The example was simple enough to clear the doubts about the existence of Besicovitch functions. In 1932, S. Saks showed that the set of Besicovitch functions is only a meager set in C[0,1]. Thus the Baire category method for showing the existence of Besicovitch functions cannot be directly applied. A. P. Morse in 1938 constructed Besicovitch functions. In 1984, Maly revived the Baire category method by finding a non-empty compact subspace of (C[0,1], || • ||) with respect to which the set of Morse-Besicovitch functions is comeager.
Contributing Partner: UNT Libraries
The Continuous Wavelet Transform and the Wave Front Set

The Continuous Wavelet Transform and the Wave Front Set

Date: December 1993
Creator: Navarro, Jaime
Description: In this paper I formulate an explicit wavelet transform that, applied to any distribution in S^1(R^2), yields a function on phase space whose high-frequency singularities coincide precisely with the wave front set of the distribution. This characterizes the wave front set of a distribution in terms of the singularities of its wavelet transform with respect to a suitably chosen basic wavelet.
Contributing Partner: UNT Libraries
Countable Additivity, Exhaustivity, and the Structure of Certain Banach Lattices

Countable Additivity, Exhaustivity, and the Structure of Certain Banach Lattices

Date: August 1999
Creator: Huff, Cheryl Rae
Description: The notion of uniform countable additivity or uniform absolute continuity is present implicitly in the Lebesgue Dominated Convergence Theorem and explicitly in the Vitali-Hahn-Saks and Nikodym Theorems, respectively. V. M. Dubrovsky studied the connection between uniform countable additivity and uniform absolute continuity in a series of papers, and Bartle, Dunford, and Schwartz established a close relationship between uniform countable additivity in ca(Σ) and operator theory for the classical continuous function spaces C(K). Numerous authors have worked extensively on extending and generalizing the theorems of the preceding authors. Specifically, we mention Bilyeu and Lewis as well as Brooks and Drewnowski, whose efforts molded the direction and focus of this paper. This paper is a study of the techniques used by Bell, Bilyeu, and Lewis in their paper on uniform exhaustivity and Banach lattices to present a Banach lattice version of two important and powerful results in measure theory by Brooks and Drewnowski. In showing that the notions of exhaustivity and continuity take on familiar forms in certain Banach lattices of measures they show that these important measure theory results follow as corollaries of the generalized Banach lattice versions. This work uses their template to generalize results established by Bator, Bilyeu, and ...
Contributing Partner: UNT Libraries
Cycles and Cliques in Steinhaus Graphs

Cycles and Cliques in Steinhaus Graphs

Date: December 1994
Creator: Lim, Daekeun
Description: In this dissertation several results in Steinhaus graphs are investigated. First under some further conditions imposed on the induced cycles in steinhaus graphs, the order of induced cycles in Steinhaus graphs is at most [(n+3)/2]. Next the results of maximum clique size in Steinhaus graphs are used to enumerate the Steinhaus graphs having maximal cliques. Finally the concept of jumbled graphs and Posa's Lemma are used to show that almost all Steinhaus graphs are Hamiltonian.
Contributing Partner: UNT Libraries
Descriptions and Computation of Ultrapowers in L(R)

Descriptions and Computation of Ultrapowers in L(R)

Date: August 1995
Creator: Khafizov, Farid T.
Description: The results from this dissertation are an exact computation of ultrapowers by measures on cardinals $\aleph\sb{n},\ n\in w$, in $L(\IR$), and a proof that ordinals in $L(\IR$) below $\delta\sbsp{5}{1}$ represented by descriptions and the identity function with respect to sequences of measures are cardinals. An introduction to the subject with the basic definitions and well known facts is presented in chapter I. In chapter II, we define a class of measures on the $\aleph\sb{n},\ n\in\omega$, in $L(\IR$) and derive a formula for an exact computation of the ultrapowers of cardinals by these measures. In chapter III, we give the definitions of descriptions and the lowering operator. Then we prove that ordinals represented by descriptions and the identity function are cardinals. This result combined with the fact that every cardinal $<\delta\sbsp{5}{1}$ in $L(\IR$) is represented by a description (J1), gives a characterization of cardinals in $L(\IR$) below $\delta\sbsp{5}{1}. Concrete examples of formal computations are shown in chapter IV.
Contributing Partner: UNT Libraries
Existence of a Sign-Changing Solution to a Superlinear Dirichlet Problem

Existence of a Sign-Changing Solution to a Superlinear Dirichlet Problem

Date: August 1995
Creator: Neuberger, John M. (John Michael)
Description: We study the existence, multiplicity, and nodal structure of solutions to a superlinear elliptic boundary value problem. Under specific hypotheses on the superlinearity, we show that there exist at least three nontrivial solutions. A pair of solutions are of one sign (positive and negative respectively), and the third solution changes sign exactly once. Our technique is variational, i.e., we study the critical points of the associated action functional to find solutions. First, we define a codimension 1 submanifold of a Sobolev space . This submanifold contains all weak solutions to our problem, and in our case, weak solutions are also classical solutions. We find nontrivial solutions which are local minimizers of our action functional restricted to various subsets of this submanifold. Additionally, if nondegenerate, the one-sign solutions are of Morse index 1 and the sign-changing solution has Morse index 2. We also establish that the action level of the sign-changing solution is bounded below by the sum of the two lesser levels of the one-sign solutions. Our results extend and complement the findings of Z. Q. Wang ([W]). We include a small sample of earlier works in the general area of superlinear elliptic boundary value problems.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 NEXT LAST