## You limited your search to:

**Partner:**UNT Libraries

**Resource Type:**Thesis or Dissertation

**Degree Discipline:**Mathematics

### Basic Fourier Transforms

**Date:**January 1962

**Creator:**Cumbie, James Randolph

**Description:**The purpose of this paper is to develop some of the more basic Fourier transforms which are the outgrowth of the Fourier theorem. Although often approached from the stand-point of the series, this paper will approach the theorem from the standpoint of the integral.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc130482/

### Borel Determinacy and Metamathematics

**Date:**December 2001

**Creator:**Bryant, Ross

**Description:**Borel determinacy states that if G(T;X) is a game and X is Borel, then G(T;X) is determined. Proved by Martin in 1975, Borel determinacy is a theorem of ZFC set theory, and is, in fact, the best determinacy result in ZFC. However, the proof uses sets of high set theoretic type (N1 many power sets of ω). Friedman proved in 1971 that these sets are necessary by showing that the Axiom of Replacement is necessary for any proof of Borel Determinacy. To prove this, Friedman produces a model of ZC and a Borel set of Turing degrees that neither contains nor omits a cone; so by another theorem of Martin, Borel Determinacy is not a theorem of ZC. This paper contains three main sections: Martin's proof of Borel Determinacy; a simpler example of Friedman's result, namely, (in ZFC) a coanalytic set of Turing degrees that neither contains nor omits a cone; and finally, the Friedman result.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3061/

### Borel Sets and Baire Functions

**Date:**January 1970

**Creator:**Wemple, Fred W.

**Description:**This paper examines the relationship between Borel sets and Baire functions.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc163964/

### Bounded, Finitely Additive, but Not Absolutely Continuous Set Functions

**Date:**May 1989

**Creator:**Gurney, David R. (David Robert)

**Description:**In leading up to the proof, methods for constructing fields and finitely additive set functions are introduced with an application involving the Tagaki function given as an example. Also, non-absolutely continuous set functions are constructed using Banach limits and maximal filters.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc332375/

### The Buckling of a Uniformly Compressed Plate with Intermediate Supports

**Date:**1949

**Creator:**Dean, Thomas S.

**Description:**This problem has been selected from the mathematical theory of elasticity. We consider a rectangular plate of thickness h, length a, and width b. The plate is subjected to compressive forces. These forces act in the neutral plane and give the plate a tendency to buckle. However, this problem differs from other plate problems in that it is assumed that there are two intermediate supports located on the edges of the plate parallel to the compressive forces.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc83479/

### The Cantor Ternary Set and Certain of its Generalizations and Applications

**Date:**1942

**Creator:**Hembree, Gwendolyn

**Description:**This thesis covers the Cantor Ternary Set and generalizations of the Cantor Set, and gives a complete existential theory for three set properties: denumerability, exhaustibility, and zero measure.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc70344/

### Centers of Invariant Differential Operator Algebras for Jacobi Groups of Higher Rank

**Date:**August 2013

**Creator:**Dahal, Rabin

**Description:**Let G be a Lie group acting on a homogeneous space G/K. The center of the universal enveloping algebra of the Lie algebra of G maps homomorphically into the center of the algebra of differential operators on G/K invariant under the action of G. In the case that G is a Jacobi Lie group of rank 2, we prove that this homomorphism is surjective and hence that the center of the invariant differential operator algebra is the image of the center of the universal enveloping algebra. This is an extension of work of Bringmann, Conley, and Richter in the rank 1case.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc283833/

### Certain Properties of Functions Related to Exhaustibility

**Date:**1952

**Creator:**Bradford, James C.

**Description:**In this thesis, we shall attempt to present a study of certain properties of real functions related to the set property exhaustible.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc107821/

### A Characterization of Homeomorphic Bernoulli Trial Measures.

**Date:**August 2006

**Creator:**Yingst, Andrew Q.

**Description:**We give conditions which, given two Bernoulli trial measures, determine whether there exists a homeomorphism of Cantor space which sends one measure to the other, answering a question of Oxtoby. We then provide examples, relating these results to the notions of good and refinable measures on Cantor space.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc5331/

### Characterizations of Continua of Finite Degree

**Date:**August 2006

**Creator:**Irwin, Shana

**Description:**In this thesis, some characterizations of continua of finite degree are given. It turns out that being of finite degree (by formal definition) can be described by saying there exists an equivalent metric in which Hausdorff linear measure of the continuum is finite. I discuss this result in detail.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc5367/