## You limited your search to:

**Partner:**UNT Libraries

**Degree Discipline:**Educational Research

**Degree Level:**Doctoral

**Collection:**UNT Theses and Dissertations

### Ability Estimation Under Different Item Parameterization and Scoring Models

**Date:**May 2002

**Creator:**Si, Ching-Fung B.

**Description:**A Monte Carlo simulation study investigated the effect of scoring format, item parameterization, threshold configuration, and prior ability distribution on the accuracy of ability estimation given various IRT models. Item response data on 30 items from 1,000 examinees was simulated using known item parameters and ability estimates. The item response data sets were submitted to seven dichotomous or polytomous IRT models with different item parameterization to estimate examinee ability. The accuracy of the ability estimation for a given IRT model was assessed by the recovery rate and the root mean square errors. The results indicated that polytomous models produced more accurate ability estimates than the dichotomous models, under all combinations of research conditions, as indicated by higher recovery rates and lower root mean square errors. For the item parameterization models, the one-parameter model out-performed the two-parameter and three-parameter models under all research conditions. Among the polytomous models, the partial credit model had more accurate ability estimation than the other three polytomous models. The nominal categories model performed better than the general partial credit model and the multiple-choice model with the multiple-choice model the least accurate. The results further indicated that certain prior ability distributions had an effect on the accuracy ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3116/

### The Analysis of the Accumulation of Type II Error in Multiple Comparisons for Specified Levels of Power to Violation of Normality with the Dunn-Bonferroni Procedure: a Monte Carlo Study

**Date:**August 1989

**Creator:**Powers-Prather, Bonnie Ann

**Description:**The study seeks to determine the degree of accumulation of Type II error rates, while violating the assumptions of normality, for different specified levels of power among sample means. The study employs a Monte Carlo simulation procedure with three different specified levels of power, methodologies, and population distributions. On the basis of the comparisons of actual and observed error rates, the following conclusions appear to be appropriate. 1. Under the strict criteria for evaluation of the hypotheses, Type II experimentwise error does accumulate at a rate that the probability of accepting at least one null hypothesis in a family of tests, when in theory all of the alternate hypotheses are true, is high, precluding valid tests at the beginning of the study. 2. The Dunn-Bonferroni procedure of setting the critical value based on the beta value per contrast did not significantly reduce the probability of committing a Type II error in a family of tests. 3. The use of an adequate sample size and orthogonal contrasts, or limiting the number of pairwise comparisons to the number of means, is the best method to control for the accumulation of Type II errors. 4. The accumulation of Type II error is irrespective ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc331385/

### Attenuation of the Squared Canonical Correlation Coefficient Under Varying Estimates of Score Reliability

**Date:**August 2010

**Creator:**Wilson, Celia M.

**Description:**Research pertaining to the distortion of the squared canonical correlation coefficient has traditionally been limited to the effects of sampling error and associated correction formulas. The purpose of this study was to compare the degree of attenuation of the squared canonical correlation coefficient under varying conditions of score reliability. Monte Carlo simulation methodology was used to fulfill the purpose of this study. Initially, data populations with various manipulated conditions were generated (N = 100,000). Subsequently, 500 random samples were drawn with replacement from each population, and data was subjected to canonical correlation analyses. The canonical correlation results were then analyzed using descriptive statistics and an ANOVA design to determine under which condition(s) the squared canonical correlation coefficient was most attenuated when compared to population Rc2 values. This information was analyzed and used to determine what effect, if any, the different conditions considered in this study had on Rc2. The results from this Monte Carlo investigation clearly illustrated the importance of score reliability when interpreting study results. As evidenced by the outcomes presented, the more measurement error (lower reliability) present in the variables included in an analysis, the more attenuation experienced by the effect size(s) produced in the analysis, in this ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc30528/

### Bias and Precision of the Squared Canonical Correlation Coefficient under Nonnormal Data Conditions

**Date:**August 2006

**Creator:**Leach, Lesley Ann Freeny

**Description:**This dissertation: (a) investigated the degree to which the squared canonical correlation coefficient is biased in multivariate nonnormal distributions and (b) identified formulae that adjust the squared canonical correlation coefficient (Rc2) such that it most closely approximates the true population effect under normal and nonnormal data conditions. Five conditions were manipulated in a fully-crossed design to determine the degree of bias associated with Rc2: distribution shape, variable sets, sample size to variable ratios, and within- and between-set correlations. Very few of the condition combinations produced acceptable amounts of bias in Rc2, but those that did were all found with first function results. The sample size to variable ratio (n:v)was determined to have the greatest impact on the bias associated with the Rc2 for the first, second, and third functions. The variable set condition also affected the accuracy of Rc2, but for the second and third functions only. The kurtosis levels of the marginal distributions (b2), and the between- and within-set correlations demonstrated little or no impact on the bias associated with Rc2. Therefore, it is recommended that researchers use n:v ratios of at least 10:1 in canonical analyses, although greater n:v ratios have the potential to produce even less bias. ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc5361/

### The Characteristics and Properties of the Threshold and Squared-Error Criterion-Referenced Agreement Indices

**Date:**May 1988

**Creator:**Dutschke, Cynthia F. (Cynthia Fleming)

**Description:**Educators who use criterion-referenced measurement to ascertain the current level of performance of an examinee in order that the examinee may be classified as either a master or a nonmaster need to know the accuracy and consistency of their decisions regarding assignment of mastery states. This study examined the sampling distribution characteristics of two reliability indices that use the squared-error agreement function: Livingston's k^2(X,Tx) and Brennan and Kane's M(C). The sampling distribution characteristics of five indices that use the threshold agreement function were also examined: Subkoviak's Pc. Huynh's p and k. and Swaminathan's p and k. These seven methods of calculating reliability were also compared under varying conditions of sample size, test length, and criterion or cutoff score. Computer-generated data provided randomly parallel test forms for N = 2000 cases. From this, 1000 samples were drawn, with replacement, and each of the seven reliability indices was calculated. Descriptive statistics were collected for each sample set and examined for distribution characteristics. In addition, the mean value for each index was compared to the population parameter value of consistent mastery/nonmastery classifications. The results indicated that the sampling distribution characteristics of all seven reliability indices approach normal characteristics with increased sample size. The ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc331415/

### A Comparison of IRT and Rasch Procedures in a Mixed-Item Format Test

**Date:**August 2003

**Creator:**Kinsey, Tari L.

**Description:**This study investigated the effects of test length (10, 20 and 30 items), scoring schema (proportion of dichotomous ad polytomous scoring) and item analysis model (IRT and Rasch) on the ability estimates, test information levels and optimization criteria of mixed item format tests. Polytomous item responses to 30 items for 1000 examinees were simulated using the generalized partial-credit model and SAS software. Portions of the data were re-coded dichotomously over 11 structured proportions to create 33 sets of test responses including mixed item format tests. MULTILOG software was used to calculate the examinee ability estimates, standard errors, item and test information, reliability and fit indices. A comparison of IRT and Rasch item analysis procedures was made using SPSS software across ability estimates and standard errors of ability estimates using a 3 x 11 x 2 fixed factorial ANOVA. Effect sizes and power were reported for each procedure. Scheffe post hoc procedures were conducted on significant factos. Test information was analyzed and compared across the range of ability levels for all 66-design combinations. The results indicated that both test length and the proportion of items scored polytomously had a significant impact on the amount of test information produced by mixed item ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4316/

### Comparison of Methods for Computation and Cumulation of Effect Sizes in Meta-Analysis

**Date:**December 1987

**Creator:**Ronco, Sharron L. (Sharron Lee)

**Description:**This study examined the statistical consequences of employing various methods of computing and cumulating effect sizes in meta-analysis. Six methods of computing effect size, and three techniques for combining study outcomes, were compared. Effect size metrics were calculated with one-group and pooled standardizing denominators, corrected for bias and for unreliability of measurement, and weighted by sample size and by sample variance. Cumulating techniques employed as units of analysis the effect size, the study, and an average study effect. In order to determine whether outcomes might vary with the size of the meta-analysis, mean effect sizes were also compared for two smaller subsets of studies. An existing meta-analysis of 60 studies examining the effectiveness of computer-based instruction was used as a data base for this investigation. Recomputation of the original study data under the six different effect size formulas showed no significant difference among the metrics. Maintaining the independence of the data by using only one effect size per study, whether a single or averaged effect, produced a higher mean effect size than averaging all effect sizes together, although the difference did not reach statistical significance. The sampling distribution of effect size means approached that of the population of 60 studies ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc331655/

### A Comparison of Some Continuity Corrections for the Chi-Squared Test in 3 x 3, 3 x 4, and 3 x 5 Tables

**Date:**May 1987

**Creator:**Mullen, Jerry D. (Jerry Davis)

**Description:**This study was designed to determine whether chis-quared based tests for independence give reliable estimates (as compared to the exact values provided by Fisher's exact probabilities test) of the probability of a relationship between the variables in 3 X 3, 3 X 4 , and 3 X 5 contingency tables when the sample size is 10, 20, or 30. In addition to the classical (uncorrected) chi-squared test, four methods for continuity correction were compared to Fisher's exact probabilities test. The four methods were Yates' correction, two corrections attributed to Cochran, and Mantel's correction. The study was modeled after a similar comparison conducted on 2 X 2 contingency tables and published by Michael Haber.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc331001/

### A comparison of the Effects of Different Sizes of Ceiling Rules on the Estimates of Reliability of a Mathematics Achievement Test

**Date:**May 1987

**Creator:**Somboon Suriyawongse

**Description:**This study compared the estimates of reliability made using one, two, three, four, five, and unlimited consecutive failures as ceiling rules in scoring a mathematics achievement test which is part of the Iowa Tests of Basic Skill (ITBS), Form 8. There were 700 students randomly selected from a population (N=2640) of students enrolled in the eight grades in a large urban school district in the southwestern United States. These 700 students were randomly divided into seven subgroups so that each subgroup had 100 students. The responses of all those students to three subtests of the mathematics achievement battery, which included mathematical concepts (44 items), problem solving (32 items), and computation (45 items), were analyzed to obtain the item difficulties and a total score for each student. The items in each subtest then were rearranged based on the item difficulties from the highest to the lowest value. In each subgroup, the method using one, two, three, four, five, and unlimited consecutive failures as the ceiling rules were applied to score the individual responses. The total score for each individual was the sum of the correct responses prior to the point described by the ceiling rule. The correct responses after the ceiling ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc331183/

### A Comparison of Three Criteria Employed in the Selection of Regression Models Using Simulated and Real Data

**Date:**December 1994

**Creator:**Graham, D. Scott

**Description:**Researchers who make predictions from educational data are interested in choosing the best regression model possible. Many criteria have been devised for choosing a full or restricted model, and also for selecting the best subset from an all-possible-subsets regression. The relative practical usefulness of three of the criteria used in selecting a regression model was compared in this study: (a) Mallows' C_p, (b) Amemiya's prediction criterion, and (c) Hagerty and Srinivasan's method involving predictive power. Target correlation matrices with 10,000 cases were simulated so that the matrices had varying degrees of effect sizes. The amount of power for each matrix was calculated after one or two predictors was dropped from the full regression model, for sample sizes ranging from n = 25 to n = 150. Also, the null case, when one predictor was uncorrelated with the other predictors, was considered. In addition, comparisons for regression models selected using C_p and prediction criterion were performed using data from the National Educational Longitudinal Study of 1988.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc278764/

### A Comparison of Three Item Selection Methods in Criterion-Referenced Tests

**Date:**August 1988

**Creator:**Lin, Hui-Fen

**Description:**This study compared three methods of selecting the best discriminating test items and the resultant test reliability of mastery/nonmastery classifications. These three methods were (a) the agreement approach, (b) the phi coefficient approach, and (c) the random selection approach. Test responses from 1,836 students on a 50-item physical science test were used, from which 90 distinct data sets were generated for analysis. These 90 data sets contained 10 replications of the combination of three different sample sizes (75, 150, and 300) and three different numbers of test items (15, 25, and 35). The results of this study indicated that the agreement approach was an appropriate method to be used for selecting criterion-referenced test items at the classroom level, while the phi coefficient approach was an appropriate method to be used at the district and/or state levels. The random selection method did not have similar characteristics in selecting test items and produced the lowest reliabilities, when compared with the agreement and the phi coefficient approaches.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc332327/

### A comparison of traditional and IRT factor analysis.

**Date:**December 2004

**Creator:**Kay, Cheryl Ann

**Description:**This study investigated the item parameter recovery of two methods of factor analysis. The methods researched were a traditional factor analysis of tetrachoric correlation coefficients and an IRT approach to factor analysis which utilizes marginal maximum likelihood estimation using an EM algorithm (MMLE-EM). Dichotomous item response data was generated under the 2-parameter normal ogive model (2PNOM) using PARDSIM software. Examinee abilities were sampled from both the standard normal and uniform distributions. True item discrimination, a, was normal with a mean of .75 and a standard deviation of .10. True b, item difficulty, was specified as uniform [-2, 2]. The two distributions of abilities were completely crossed with three test lengths (n= 30, 60, and 100) and three sample sizes (N = 50, 500, and 1000). Each of the 18 conditions was replicated 5 times, resulting in 90 datasets. PRELIS software was used to conduct a traditional factor analysis on the tetrachoric correlations. The IRT approach to factor analysis was conducted using BILOG 3 software. Parameter recovery was evaluated in terms of root mean square error, average signed bias, and Pearson correlations between estimated and true item parameters. ANOVAs were conducted to identify systematic differences in error indices. Based on many ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4695/

### A Comparison of Traditional Norming and Rasch Quick Norming Methods

**Date:**August 1993

**Creator:**Bush, Joan Spooner

**Description:**The simplicity and ease of use of the Rasch procedure is a decided advantage. The test user needs only two numbers: the frequency of persons who answered each item correctly and the Rasch-calibrated item difficulty, usually a part of an existing item bank. Norms can be computed quickly for any specific group of interest. In addition, once the selected items from the calibrated bank are normed, any test, built from the item bank, is automatically norm-referenced. Thus, it was concluded that the Rasch quick norm procedure is a meaningful alternative to traditional classical true score norming for test users who desire normative data.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc277818/

### A Comparison of Two Differential Item Functioning Detection Methods: Logistic Regression and an Analysis of Variance Approach Using Rasch Estimation

**Date:**August 1995

**Creator:**Whitmore, Marjorie Lee Threet

**Description:**Differential item functioning (DIF) detection rates were examined for the logistic regression and analysis of variance (ANOVA) DIF detection methods. The methods were applied to simulated data sets of varying test length (20, 40, and 60 items) and sample size (200, 400, and 600 examinees) for both equal and unequal underlying ability between groups as well as for both fixed and varying item discrimination parameters. Each test contained 5% uniform DIF items, 5% non-uniform DIF items, and 5% combination DIF (simultaneous uniform and non-uniform DIF) items. The factors were completely crossed, and each experiment was replicated 100 times. For both methods and all DIF types, a test length of 20 was sufficient for satisfactory DIF detection. The detection rate increased significantly with sample size for each method. With the ANOVA DIF method and uniform DIF, there was a difference in detection rates between discrimination parameter types, which favored varying discrimination and decreased with increased sample size. The detection rate of non-uniform DIF using the ANOVA DIF method was higher with fixed discrimination parameters than with varying discrimination parameters when relative underlying ability was unequal. In the combination DIF case, there was a three-way interaction among the experimental factors discrimination type, ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc278366/

### Comparisons of Improvement-Over-Chance Effect Sizes for Two Groups Under Variance Heterogeneity and Prior Probabilities

**Date:**May 2003

**Creator:**Alexander, Erika D.

**Description:**The distributional properties of improvement-over-chance, I, effect sizes derived from linear and quadratic predictive discriminant analysis (PDA) and from logistic regression analysis (LRA) for the two-group univariate classification were examined. Data were generated under varying levels of four data conditions: population separation, variance pattern, sample size, and prior probabilities. None of the indices provided acceptable estimates of effect for all the conditions examined. There were only a small number of conditions under which both accuracy and precision were acceptable. The results indicate that the decision of which method to choose is primarily determined by variance pattern and prior probabilities. Under variance homogeneity, any of the methods may be recommended. However, LRA is recommended when priors are equal or extreme and linear PDA is recommended when priors are moderate. Under variance heterogeneity, selecting a recommended method is more complex. In many cases, more than one method could be used appropriately.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4242/

### Convergent Validity of Variables Residualized By a Single Covariate: the Role of Correlated Error in Populations and Samples

**Date:**May 2013

**Creator:**Nimon, Kim

**Description:**This study examined the bias and precision of four residualized variable validity estimates (C0, C1, C2, C3) across a number of study conditions. Validity estimates that considered measurement error, correlations among error scores, and correlations between error scores and true scores (C3) performed the best, yielding no estimates that were practically significantly different than their respective population parameters, across study conditions. Validity estimates that considered measurement error and correlations among error scores (C2) did a good job in yielding unbiased, valid, and precise results. Only in a select number of study conditions were C2 estimates unable to be computed or produced results that had sufficient variance to affect interpretation of results. Validity estimates based on observed scores (C0) fared well in producing valid, precise, and unbiased results. Validity estimates based on observed scores that were only corrected for measurement error (C1) performed the worst. Not only did they not reliably produce estimates even when the level of modeled correlated error was low, C1 produced values higher than the theoretical limit of 1.0 across a number of study conditions. Estimates based on C1 also produced the greatest number of conditions that were practically significantly different than their population parameters.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc271870/

### Determination of the Optimal Number of Strata for Bias Reduction in Propensity Score Matching.

**Date:**May 2010

**Creator:**Akers, Allen

**Description:**Previous research implementing stratification on the propensity score has generally relied on using five strata, based on prior theoretical groundwork and minimal empirical evidence as to the suitability of quintiles to adequately reduce bias in all cases and across all sample sizes. This study investigates bias reduction across varying number of strata and sample sizes via a large-scale simulation to determine the adequacy of quintiles for bias reduction under all conditions. Sample sizes ranged from 100 to 50,000 and strata from 3 to 20. Both the percentage of bias reduction and the standardized selection bias were examined. The results show that while the particular covariates in the simulation met certain criteria with five strata that greater bias reduction could be achieved by increasing the number of strata, especially with larger sample sizes. Simulation code written in R is included.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc28380/

### The Effect of Psychometric Parallelism among Predictors on the Efficiency of Equal Weights and Least Squares Weights in Multiple Regression

**Date:**May 1996

**Creator:**Zhang, Desheng

**Description:**There are several conditions for applying equal weights as an alternative to least squares weights. Psychometric parallelism, one of the conditions, has been suggested as a necessary and sufficient condition for equal-weights aggregation. The purpose of this study is to investigate the effect of psychometric parallelism among predictors on the efficiency of equal weights and least squares weights. Target correlation matrices with 10,000 cases were simulated so that the matrices had varying degrees of psychometric parallelism. Five hundred samples with six ratios of observation to predictor = 5/1, 10/1, 20/1, 30/1, 40/1, and 50/1 were drawn from each population. The efficiency is interpreted as the accuracy and the predictive power estimated by the weighting methods. The accuracy is defined by the deviation between the population R² and the sample R² . The predictive power is referred to as the population cross-validated R² and the population mean square error of prediction. The findings indicate there is no statistically significant relationship between the level of psychometric parallelism and the accuracy of least squares weights. In contrast, the correlation between the level of psychometric parallelism and the accuracy of equal weights is significantly negative. Under different conditions, the minimum p value of χ² ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc278996/

### Effect of Rater Training and Scale Type on Leniency and Halo Error in Student Ratings of Faculty

**Date:**May 1987

**Creator:**Cook, Stuart S. (Stuart Sheldon)

**Description:**The purpose of this study was to determine if leniency and halo error in student ratings could be reduced by training the student raters and by using a Behaviorally Anchored Rating Scale (BARS) rather than a Likert scale. Two hypotheses were proposed. First, the ratings collected from the trained raters would contain less halo and leniency error than those collected from the untrained raters. Second, within the group of trained raters the BARS would contain less halo and leniency error than the Likert instrument.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc330753/

### The Effectiveness of a Mediating Structure for Writing Analysis Level Test Items From Text Based Instruction

**Date:**August 1989

**Creator:**Brasel, Michael D. (Michael David)

**Description:**This study is concerned with the effect of placing text into a mediated structure form upon the generation of test items for analysis level domain referenced test construction. The item writing methodology used is the linguistic (operationally defined) item writing technology developed by Bormuth, Finn, Roid, Haladyna and others. This item writing methodology is compared to 1) the intuitive method based on Bloom's definition of analysis level test questions and 2) the intuitive with keywords identified method of item writing. A mediated structure was developed by coordinating or subordinating sentences in an essay by following five simple grammatical rules. Three test writers each composed a ten-item test using each of the three methodologies based on a common essay. Tests were administered to 102 Composition 1 community college students. Students were asked to read the essay and complete one test form. Test forms by writer and method were randomly delivered. Analysis of variance showed no significant differences among either methods or writers. Item analysis showed no method of item writing resulting in items of consistent difficulty among test item writers. While the results of this study show no significant difference from the intuitive, traditional methods of item writing, analysis level test ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc332268/

### An Empirical Comparison of Random Number Generators: Period, Structure, Correlation, Density, and Efficiency

**Date:**August 1995

**Creator:**Bang, Jung Woong

**Description:**Random number generators (RNGs) are widely used in conducting Monte Carlo simulation studies, which are important in the field of statistics for comparing power, mean differences, or distribution shapes between statistical approaches. Statistical results, however, may differ when different random number generators are used. Often older methods have been blindly used with no understanding of their limitations. Many random functions supplied with computers today have been found to be comparatively unsatisfactory. In this study, five multiplicative linear congruential generators (MLCGs) were chosen which are provided in the following statistical packages: RANDU (IBM), RNUN (IMSL), RANUNI (SAS), UNIFORM(SPSS), and RANDOM (BMDP). Using a personal computer (PC), an empirical investigation was performed using five criteria: period length before repeating random numbers, distribution shape, correlation between adjacent numbers, density of distributions and normal approach of random number generator (RNG) in a normal function. All RNG FORTRAN programs were rewritten into Pascal which is more efficient language for the PC. Sets of random numbers were generated using different starting values. A good RNG should have the following properties: a long enough period; a well-structured pattern in distribution; independence between random number sequences; random and uniform distribution; and a good normal approach in the normal ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc277807/

### Establishing the utility of a classroom effectiveness index as a teacher accountability system.

**Date:**May 2002

**Creator:**Bembry, Karen L.

**Description:**How to identify effective teachers who improve student achievement despite diverse student populations and school contexts is an ongoing discussion in public education. The need to show communities and parents how well teachers and schools improve student learning has led districts and states to seek a fair, equitable and valid measure of student growth using student achievement. This study investigated a two stage hierarchical model for estimating teacher effect on student achievement. This measure was entitled a Classroom Effectiveness Index (CEI). Consistency of this model over time, outlier influences in individual CEIs, variance among CEIs across four years, and correlations of second stage student residuals with first stage student residuals were analyzed. The statistical analysis used four years of student residual data from a state-mandated mathematics assessment (n=7086) and a state-mandated reading assessment (n=7572) aggregated by teacher. The study identified the following results. Four years of district grand slopes and grand intercepts were analyzed to show consistent results over time. Repeated measures analyses of grand slopes and intercepts in mathematics were statistically significant at the .01 level. Repeated measures analyses of grand slopes and intercepts in reading were not statistically significant. The analyses indicated consistent results over time for reading ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3161/

### The Generalization of the Logistic Discriminant Function Analysis and Mantel Score Test Procedures to Detection of Differential Testlet Functioning

**Date:**August 1994

**Creator:**Kinard, Mary E.

**Description:**Two procedures for detection of differential item functioning (DIF) for polytomous items were generalized to detection of differential testlet functioning (DTLF). The methods compared were the logistic discriminant function analysis procedure for uniform and non-uniform DTLF (LDFA-U and LDFA-N), and the Mantel score test procedure. Further analysis included comparison of results of DTLF analysis using the Mantel procedure with DIF analysis of individual testlet items using the Mantel-Haenszel (MH) procedure. Over 600 chi-squares were analyzed and compared for rejection of null hypotheses. Samples of 500, 1,000, and 2,000 were drawn by gender subgroups from the NELS:88 data set, which contains demographic and test data from over 25,000 eighth graders. Three types of testlets (totalling 29) from the NELS:88 test were analyzed for DTLF. The first type, the common passage testlet, followed the conventional testlet definition: items grouped together by a common reading passage, figure, or graph. The other two types were based upon common content and common process. as outlined in the NELS test specification.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc279043/

### A Hierarchical Regression Analysis of the Relationship Between Blog Reading, Online Political Activity, and Voting During the 2008 Presidential Campaign

**Date:**December 2010

**Creator:**Lewis, Mitzi

**Description:**The advent of the Internet has increased access to information and impacted many aspects of life, including politics. The present study utilized Pew Internet & American Life survey data from the November 2008 presidential election time period to investigate the degree to which political blog reading predicted online political discussion, online political participation, whether or not a person voted, and voting choice, over and above the predication that could be explained by demographic measures of age, education level, gender, income, marital status, race/ethnicity, and region. Ordinary least squares hierarchical regression revealed that political blog reading was positively and statistically significantly related to online political discussion and online political participation. Hierarchical logistic regression analysis indicated that the odds of a political blog reader voting were 1.98 the odds of a nonreader voting, but vote choice was not predicted by reading political blogs. These results are interpreted within the uses and gratifications framework and the understanding that blogs add an interpersonal communication aspect to a mass medium. As more people use blogs and the nature of the blog-reading audience shifts, continuing to track and describe the blog audience with valid measures will be important for researchers and practitioners alike. Subsequent potential effects ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc33182/