You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Chemistry
 Degree Level: Doctoral
 Collection: UNT Theses and Dissertations
Adhesion/Diffusion Barrier Layers for Copper Integration: Carbon-Silicon Polymer Films and Tantalum Substrates

Adhesion/Diffusion Barrier Layers for Copper Integration: Carbon-Silicon Polymer Films and Tantalum Substrates

Date: December 1999
Creator: Chen, Li
Description: The Semiconductor Industry Association (SIA) has identified the integration of copper (Cu) with low-dielectric-constant (low-k) materials as a critical goal for future interconnect architectures. A fundamental understanding of the chemical interaction of Cu with various substrates, including diffusion barriers and adhesion promoters, is essential to achieve this goal. The objective of this research is to develop novel organic polymers as Cu/low-k interfacial layers and to investigate popular barrier candidates, such as clean and modified tantalum (Ta) substrates. Carbon-silicon (C-Si) polymeric films have been formed by electron beam bombardment or ultraviolet (UV) radiation of molecularly adsorbed vinyl silane precursors on metal substrates under ultra-high vacuum (UHV) conditions. Temperature programmed desorption (TPD) studies show that polymerization is via the vinyl groups, while Auger electron spectroscopy (AES) results show that the polymerized films have compositions similar to the precursors. Films derived from vinyltrimethyl silane (VTMS) are adherent and stable on Ta substrates until 1100 K. Diffusion of deposited Cu overlayers is not observed below 800 K, with dewetting occurred only above 400 K. Hexafluorobenzene moieties can also be incorporated into the growing film with good thermal stability. Studies on the Ta substrates demonstrate that even sub-monolayer coverages of oxygen or carbide on polycrystalline ...
Contributing Partner: UNT Libraries
Adsorbate-enhanced Corrosion Processes at Iron and Iron Oxide Surfaces

Adsorbate-enhanced Corrosion Processes at Iron and Iron Oxide Surfaces

Date: December 1994
Creator: Murray, Eric
Description: This study was intended to provide a fuller understanding of the surface chemical processes which result in the corrosion of ferrous materials.
Contributing Partner: UNT Libraries
Aldohaloketenes and the Stereochemistry of Aldohaloketene Cycloadditions

Aldohaloketenes and the Stereochemistry of Aldohaloketene Cycloadditions

Date: May 1970
Creator: Hoff, Edwin Frank
Description: The objective of this research problem was to synthesize aldohaloketenes and investigate the chemistry of this new class of ketenes.
Contributing Partner: UNT Libraries
Analysis of Acid Gas Emissions in the Combustion of the Binder Enhanced d-RDF by Ion Chromatography

Analysis of Acid Gas Emissions in the Combustion of the Binder Enhanced d-RDF by Ion Chromatography

Date: August 1988
Creator: Jen, Jen-Fon
Description: Waste-to-energy has become an attractive alternative to landfills. One concern in this development is the release of pollutants in the combustion process. The binder enhanced d-RDF pellets satisfy the requirements of environmental acceptance, chemical/biological stability, and being storeable. The acid gas emissions of combusting d-RDF pellets with sulfur-rich coal were analyzed by ion chromatography and decreased when d-RDF pellets were utilized. The results imply the possibility of using d-RDF pellets to substitute for sulfur-rich coal as fuel, and also substantiate the effectiveness of a binder, calcium hydroxide, in decreasing emissions of SOx. In order to perform the analysis of the combustion sample, sampling and sample pretreatment methods prior to the IC analysis and the first derivative detection mode in IC are investigated as well. At least two trapping reagents are necessary for collecting acid gases: one for hydrogen halides, and the other for NOx and SOx. Factors affecting the absorption of acid gases are studied, and the strength of an oxidizing agent is the main factor affecting the collection of NOx and SOx. The absorption preference series of acid gases are determined and the absorption models of acid gases in trapping reagents are derived from the analytical results. To prevent ...
Contributing Partner: UNT Libraries
The Analysis of Volatile Impurities in Air by Gas Chromatography/Mass Spectrometry

The Analysis of Volatile Impurities in Air by Gas Chromatography/Mass Spectrometry

Date: May 1993
Creator: Talasek, Robert Thomas
Description: The determination of carbon monoxide is also possible by trapping CO on preconditioned molecular sieve and thermal desorption. Analysis in this case is performed by gas chromatography/mass spectroscopy, although the trapping technique is applicable to other suitable GC techniques.
Contributing Partner: UNT Libraries
Aromatic Amino Acid Studies

Aromatic Amino Acid Studies

Date: December 1970
Creator: Sullivan, Patrick Timothy
Description: Pyridine ring analogs of the aromatic amino acids phenylalanine and tyrosine were synthesized and studied in microbiological and mammalian systems.
Contributing Partner: UNT Libraries
Biological Inhibitors

Biological Inhibitors

Date: December 1971
Creator: Sargent, Dale Roger
Description: Four isosteric series of plant growth-regulating compounds were prepared. Using an Avena sativa coleptile assay system, derivatives in series I and IV inhibited segment elongation to a greater degree than did comparable derivatives in series II and III.
Contributing Partner: UNT Libraries
Bonding Studies in Group IV Substituted n,n-dimethylanilines

Bonding Studies in Group IV Substituted n,n-dimethylanilines

Date: December 1971
Creator: Drews, Michael James
Description: The purpose of the present work is to study the effects of the trimethylsilyl and trimethylgermyl substituents on the N,N-dimethylamino ring system. Both ground and excited state interactions were studied and their magnitudes determined. The experimental data were then used in conjunction with molecular orbital calculations to differentiate among, and determine the importance of, d-p bonding, hyperconjugation or polarization of the trimethylsilyl group on the ground and excited state bonding.
Contributing Partner: UNT Libraries
Characterization of Low Barrier Hydrogen Bonds in Enzyme Catalysis: an Ab Initio and DFT Investigation

Characterization of Low Barrier Hydrogen Bonds in Enzyme Catalysis: an Ab Initio and DFT Investigation

Date: August 1999
Creator: Pan, Yongping
Description: Hartree-Fock, Moller-Plesset, and density functional theory calculations have been carried out using 6-31+G(d), 6-31+G(d,p) and 6-31++G(d,p) basis sets to study the properties of low-barrier or short-strong hydrogen bonds (SSHB) and their potential role in enzyme-catalyzed reactions that involve proton abstraction from a weak carbon-acid by a weak base. Formic acid/formate anion, enol/enolate and other complexes have been chosen to simulate a SSHB system. These complexes have been calculated to form very short, very short hydrogen bonds with a very low barrier for proton transfer from the donor to the acceptor. Two important environmental factors including small amount of solvent molecules that could possibly exist at the active site of an enzyme and the polarity around the active site were simulated to study their energetic and geometrical influences to a SSHB. It was found that microsolvation that improves the matching of pK as of the hydrogen bond donor and acceptor involved in the SSHB will always increase the interaction of the hydrogen bond; microsolvation that disrupts the matching of pKas, on the other hand, will lead to a weaker SSHB. Polarity surrounding the SSHB, simulated by SCRF-SCIPCM model, can significantly reduce the strength and stability of a SSHB. The residual strength ...
Contributing Partner: UNT Libraries
Chemical Equilibria in Binary Solvents

Chemical Equilibria in Binary Solvents

Date: August 1997
Creator: McHale, Mary E. R.
Description: Dissertation research involves development of Mobile Order Theory thermodynamic models to mathematically describe and predict the solubility, spectral properties, protonation equilibrium constants and two-phase partitioning behavior of solutes dissolved in binary solvent mixtures of analytical importance. Information gained provide a better understanding of solute-solvent and solvent-solvent interactions at the molecular level, which will facilitate the development of better chemical separation methods based upon both gas-liquid and high-performance liquid chromatography, and better analysis methods based upon complexiometric and spectroscopic methods. Dissertation research emphasizes chemical equilibria in systems containing alcohol cosolvents with the understanding that knowledge gained will be transferable to more environmentally friendly aqueous-organic solvent mixtures.
Contributing Partner: UNT Libraries
Chromatographic and Spectroscopic Studies on Aquatic Fulvic Acid

Chromatographic and Spectroscopic Studies on Aquatic Fulvic Acid

Date: August 1986
Creator: Chang, David Juan-Yuan
Description: High Performance Liquid Chromatography (HPLC) was used to investigate the utility of this technique for the analytical and preparative separation of components of aquatic fulvic acids (FA). Three modes of HPLC namely adsorption, anion exchange and reversed phase were evaluated. Aquatic fulvic acids were either extracted from surface water and sediment samples collected from the Southwest of the U.S., or were provided in a high purity form from the USGS. On the adsorption mode, a major fraction of aquatic fulvic acid was isolated on a semipreparative scale and subjected to Carbon-13 NMR and FAB Mass Spectroscopy. Results indicated that (1) The analyzed fraction of fulvic acid contains more aliphatic than aromatic moieties; (2) Methoxy, carboxylic acids, and esters are well-defined moieties of the macromolecule; (3) Phenolic components of the macromolecules were not detected in the Carbon-13 NMR spectrum possibly because of the presence of stable free radicals. Results of the anion exchange mode have shown that at least three types of acidic functionalities in aquatic fulvic acid can be separated. Results also indicated that aquatic fulvic acid can be progressively fractionated by using subsequent modes of HPLC. Results of reversed phase mode have shown that (1) The fractionation of aquatic ...
Contributing Partner: UNT Libraries
Combined Electrochemistry and Spectroscopy of Complexes and Supramolecules containing Bipyridyl and Other Azabiphenyl Building Blocks

Combined Electrochemistry and Spectroscopy of Complexes and Supramolecules containing Bipyridyl and Other Azabiphenyl Building Blocks

Date: August 1995
Creator: Yang, Lei
Description: A group of azabiphenyl complexes and supramolecules, and their reduced and oxidized forms when possible, were characterized by cyclic voltammetry and electronic absorption spectroscopy. The oxidized and reduced species, if sufficiently stable, were further generated electrochemically inside a specially designed quartz cell with optically transparent electrode, so that the spectra of the electrochemically generated species could be taken in situ. Assignments were proposed for both parent and product electronic spectra. Species investigated included a range of Ru(II) and Pt(II) complexes, as well as catenanes and their comparents. Using the localized electronic model, the electrochemical reduction can be in most cases assigned as azabiphenyl-based, and the oxidation as transition metal-based. This is consistent with the fact that the azabiphenyl compounds have a low lying π* orbital. The electronic absorption spectra of the compounds under study are mainly composed of π —> π* bands with, in some cases, charge transfer bands also.
Contributing Partner: UNT Libraries
Computational Studies of C–h/c–c Manipulation Utilizing Transition Metal Complexes

Computational Studies of C–h/c–c Manipulation Utilizing Transition Metal Complexes

Date: May 2015
Creator: Pardue, Daniel B.
Description: Density Functional Theory (DFT) is an effective tool for studying diverse metal systems. Presented herein are studies of a variety of metal systems, which can be applied to accomplish transformations that are currently difficult/impossible to achieve. The specific topics studied utilizing DFT include: 1) C–H bond activation via an Earth-abundant transition metal complex, 2) C–H bond deprotonation via an alkali metal superbase, 3) and amination/aziridination reactions utilizing a CuI reagent. Using DFT, the transformation to methanol (CH3OH) from methane (CH4) was examined. The transition metal systems studied for this transformation included a model FeII complex. This first-row transition metal is an economical, Earth-abundant metal. The ligand set for this transformation includes a carbonyl ligand in one set of complexes as well as a phosphite ligand in another. The 3d Fe metal shows the ability to convert alkyls/aryls to their oxidized counterpart in an energetically favorable manner. Also, “superbasic” alkali metal amides were investigated to perform C—H bond cleavage. Toluene was the substrate of interest with Cs chosen to be the metal of interest because of the highly electropositive nature of this alkali metal. These highly electrophilic Cs metal systems allow for very favorable C—H bond scission with a toluene substrate. ...
Contributing Partner: UNT Libraries
Computational Studies of Selected Ruthenium Catalysis Reactions.

Computational Studies of Selected Ruthenium Catalysis Reactions.

Date: December 2007
Creator: Barakat, Khaldoon A.
Description: Computational techniques were employed to investigate pathways that would improve the properties and characteristics of transition metal (i.e., ruthenium) catalysts, and to explore their mechanisms. The studied catalytic pathways are particularly relevant to catalytic hydroarylation of olefins. These processes involved the +2 to +3 oxidation of ruthenium and its effect on ruthenium-carbon bond strengths, carbon-hydrogen bond activation by 1,2-addition/reductive elimination pathways appropriate to catalytic hydrogen/deuterium exchange, and the possible intermediacy of highly coordinatively unsaturated (e.g., 14-electron) ruthenium complexes in catalysis. The calculations indicate a significant decrease in the Ru-CH3 homolytic bond dissociation enthalpy for the oxidation of TpRu(CO)(NCMe)(Me) to its RuIII cation through both reactant destabilization and product stabilization. This oxidation can thus lead to the olefin polymerization observed by Gunnoe and coworkers, since weak RuIII-C bonds would afford quick access to alkyl radical species. Calculations support the experimental proposal of a mechanism for catalytic hydrogen/deuterium exchange by a RuII-OH catalyst. Furthermore, calculational investigations reveal a probable pathway for the activation of C-H bonds that involves phosphine loss, 1,2-addition to the Ru-OH bond and then reversal of these steps with deuterium to incorporate it into the substrate. The presented results offer the indication for the net addition of aromatic C-H ...
Contributing Partner: UNT Libraries
Computational Study of Small Molecule Activation via Low-Coordinate Late First-Row Transition Metal Complexes

Computational Study of Small Molecule Activation via Low-Coordinate Late First-Row Transition Metal Complexes

Date: May 2010
Creator: Pierpont, Aaron
Description: Methane and dinitrogen are abundant precursors to numerous valuable chemicals such as methanol and ammonia, respectively. However, given the robustness of these substrates, catalytically circumventing the high temperatures and pressures required for such transformations has been a challenging task for chemists. In this work, computational studies of various transition metal catalysts for methane C-H activation and N2 activation have been carried out. For methane C-H activation, catalysts of the form LnM=E are studied, where Ln is the supporting ligand (dihydrophosphinoethane or β-diketiminate), E the activating ligand (O, NCH3, NCF3) at which C-H activation takes place, and M the late transition metal (Fe,Co,Ni,Cu). A hydrogen atom abstraction (HAA) / radical rebound (RR) mechanism is assumed for methane functionalization (CH4 à CH3EH). Since the best energetics are found for (β-diket)Ni=O and (β-diket)Cu=O catalysts, with or without CF3 substituents around the supporting ligand periphery, complete methane-to-methanol cycles were studied for such systems, for which N2O was used as oxygen atom transfer (OAT) reagent. Both monometallic and bimetallic OAT pathways are addressed. Monometallic Fe-N2 complexes of various supporting ligands (LnFe-N2) are studied at the beginning of the N2 activation chapter, where the effect of ligand on N2 activation in end-on vs. side-on N2 isomers ...
Contributing Partner: UNT Libraries
Computer Simulations of Dilute Polymer Solutions: Chain Overlaps and Entanglements

Computer Simulations of Dilute Polymer Solutions: Chain Overlaps and Entanglements

Date: August 1996
Creator: Drewniak, Marta
Description: Chain conformations and the presence of chain overlaps and entanglements in dilute polymer solutions have been analyzed. The fundamental problem of existence of chain overlaps in dilute solutions is related to the drag reduction phenomenon (DR). Even though DR occurs in solutions with the concentration of only few parts per million (ppm), some theories suggest that entanglements may play an important role in DR mechanism. Brownian dynamics technique have been used to perform simulations of dilute polymer solutions at rest and under shear flow. A measure of interchain contacts and two different measures of entanglements have been devised to evaluate the structure of polymer chains in solution. Simulation results have shown that overlaps and entanglements do exist in static dilute solutions as well as in solutions under shear flow. The effect of solution concentration, shear rate and molecular mass have been examined. In agreement with the solvation theory of DR mechanism, simulation results have demonstrated the importance of polymer + polymer interactions in dilute solutions.
Contributing Partner: UNT Libraries
Conformationally Stable Cyclohexyllithium Compounds

Conformationally Stable Cyclohexyllithium Compounds

Date: January 1968
Creator: Selman, Charles Melvin
Description: Organolitnium compounds have been employed in synthetic worK for many years. However only during the last decade has much progress been made in establishing the mechanistic pathways for the reactions of these compounds.
Contributing Partner: UNT Libraries
The Crystal and Molecular Structures of 8-Hydroxyquinoline-N-Oxide and 2-Hydroxymethylpyridine-N-Oxide

The Crystal and Molecular Structures of 8-Hydroxyquinoline-N-Oxide and 2-Hydroxymethylpyridine-N-Oxide

Date: June 1970
Creator: Terry, John Christopher
Description: This dissertation looked at the crystal structure analysis of 2-hydroxymethylpyridine-N-oxide sine this compound could provide data on both substituent effects and hydrogen bonding.
Contributing Partner: UNT Libraries
The Crystal and Molecular Structures of Tri-(p-Fluorophenyl)-Amine and Tri-(p-Iodophenyl)-Amine

The Crystal and Molecular Structures of Tri-(p-Fluorophenyl)-Amine and Tri-(p-Iodophenyl)-Amine

Date: January 1970
Creator: Freeman, Gerald R. (Gerald Richard)
Description: Because of the need for data on the geometry of nitrogen in arylamines, the determination of the crystal and molecular structures of tri-(p-fluorophenyl)-amine (TFPA) and tri-(p-iodophenyl)-amine (TIPA) was undertaken as the subject of this dissertation.
Contributing Partner: UNT Libraries
The Development of Predictive Models for the Acid Degradation of Chrysotile Asbestos

The Development of Predictive Models for the Acid Degradation of Chrysotile Asbestos

Date: May 1993
Creator: Ingram, Kevin D. (Kevin Dean)
Description: The purpose of this study was to determine the factors affecting the acid degradation of chrysotile asbestos (Mg_3Si_2O_5(OH_4)) . Millions of tons of asbestos have found use in this country as insulative or ablative material. More than 95 percent of the asbestos in use is of the chrysotile variety. The remaining 5 percent is composed of various types of fibrous amphiboles. The inhalation of asbestos can lead to several diseases in humans. Asbestosis, lung cancer and mesothelioma are the most common afflictions associated with asbestos inhalation, and they may occur up to 40 years after the initial exposure. It has previously been reported that if more than 50 percent of the magnesium is removed from a chrysotile sample its carcinogenicity is reduced to nil. Several inorganic acids were studied to determine their ability to leach magnesium from chrysotile. It was found that the ability to leach magnesium was dependent upon the acidic anion in addition to the concentration of the acid. The ordering of the efficiency of the acids in their ability to remove magnesium from chrysotile was found to be HCl > H_2SO_4 > H_3PO_4 > HNO_3. Predictive equations were developed to allow the calculation of the amount of ...
Contributing Partner: UNT Libraries
Diffusion Barriers/Adhesion Promoters. Surface and Interfacial Studies of Copper and Copper-Aluminum Alloys

Diffusion Barriers/Adhesion Promoters. Surface and Interfacial Studies of Copper and Copper-Aluminum Alloys

Date: August 2000
Creator: Shepherd, Krupanand Solomon
Description: The focus of this research is to study the interaction between copper and the diffusion barrier/adhesion promoter. The behavior of copper sputter-deposited onto sputter-cleaned tantalum nitride is investigated. The data show that copper growth on tantalum nitride proceeds with the formation of 3-D islands, indicating poor adhesion characteristics between copper and Ta0.4N. Post-annealing experiments indicate that copper will diffuse into Ta0.4N at 800 K. Although the data suggests that Ta0.4N is effective in preventing copper diffusion, copper's inability to wet Ta0.4N will render this barrier ineffective. The interaction of copper with oxidized tantalum silicon nitride (O/TaSiN) is characterized. The data indicate that initial copper depositions result in the formation a conformal ionic layer followed by Cu(0) formation in subsequent depositions. Post-deposition annealing experiments performed indicate that although diffusion does not occur for temperatures less than 800 K, copper "de-wetting" occurs for temperatures above 500 K. These results indicate that in conditions where the substrate has been oxidized facile de-wetting of copper may occur. The behavior of a sputter-deposited Cu0.6Al0.4 film with SiO2 (Cu0.6Al0.4/SiO2) is investigated. The data indicate that aluminum segregates to the SiO2 interface and becomes oxidized. For copper coverages less than ~ 0.31 ML (based on a Cu/O ...
Contributing Partner: UNT Libraries
Diphosphine Ligand Activation Studies with Organotransition-Metal Compounds

Diphosphine Ligand Activation Studies with Organotransition-Metal Compounds

Access: Use of this item is restricted to the UNT Community.
Date: December 2000
Creator: Wang, Jiancheng
Description: Thermolysis of CoRu(CO)7(m -PPh2) (1) in refluxing 1,2-dichloroethane in the presence of the diphosphine ligands 2,3-bis(diphenylphosphino)maleic anhydride (bma) and 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) furnishes the new mixed-metal complexes CoRu(CO)4(μ -P-P)(μ -PPh2) [where P-P = bma (3); bpcd (6)], along with trace amounts of the known complex CoRu(CO)6(PPh3)(μ -PPh2) (4). The requisite pentacarbonyl intermediates CoRu(CO)5(μ -P-P)(μ -PPh2) [where P-P = bma (2); bpcd (5)] have been prepared by separate routes and studied for their conversion to CoRu(CO)4(μ -P-P)(μ -PPh2). The complexes 2/3 and 5/6 have been isolated and fully characterized in solution by IR and NMR spectroscopy. The kinetics for the conversion of 2→3 and of 5→6 were measured by IR spectroscopy in chlorobenzene solvent. On the basis of the first-order rate constants, CO inhibition, and the activation parameters, a mechanism involving dissociative CO loss as the rate-limiting step is proposed. The solid-state structure of CoRu(CO)4(μ -bma)(μ -PPh2) (3) reveals that the two PPh2 groups are bound to the ruthenium center while the maleic anhydride π bond is coordinated to the cobalt atom. Thermolysis of the cluster Ru3(CO)12 with the bis(phosphine)hydrazine ligand (MeO)2PN(Me)N(Me)P(OMe)2 (dmpdmh) in toluene at 75°C furnishes the known clusters Ru4(CO)12[μ -N(Me)N(Me)] (9) and Ru3(CO)11[P(OMe)3] (10), in addition to the new ...
Contributing Partner: UNT Libraries
Discontinuous Thermal Expansions and Phase Transformations in Crystals at Higher Temperatures

Discontinuous Thermal Expansions and Phase Transformations in Crystals at Higher Temperatures

Date: 1967
Creator: Hsu, Yuan Tsun
Description: The purpose of this investigation is to make more detailed studies of transformations. Fourteen compounds have been examined by high temperature X-ray diffraction for this purpose. The investigations have been carried out in such a way as to reveal: 1. the existence of transformations, 2. the influence of polarizability on thermal expansion, 3. the anisotropy of expansion, and 4. the discontinuity of thermal expansion.
Contributing Partner: UNT Libraries
Electrochemical Dissolution of  ZnO Single Crystals

Electrochemical Dissolution of ZnO Single Crystals

Date: January 1970
Creator: Justice, David Dixon
Description: The separation of oxidation-reduction reactions into individual half-cells with a resulting "mixed potential" is well known as a dissolution mechanism for metals; however, the mechanism by which non-conducting crystals lose ions to the solution has been studied only slightly.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 5 NEXT LAST