You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Chemistry
 Degree Level: Doctoral
 Collection: UNT Theses and Dissertations
Adhesion/diffusion barrier layers for copper integration: carbon-silicon polymer films and tantalum substrates

Adhesion/diffusion barrier layers for copper integration: carbon-silicon polymer films and tantalum substrates

Date: December 1999
Creator: Chen, Li
Description: The Semiconductor Industry Association (SIA) has identified the integration of copper (Cu) with low-dielectric-constant (low-k) materials as a critical goal for future interconnect architectures. A fundamental understanding of the chemical interaction of Cu with various substrates, including diffusion barriers and adhesion promoters, is essential to achieve this goal. The objective of this research is to develop novel organic polymers as Cu/low-k interfacial layers and to investigate popular barrier candidates, such as clean and modified tantalum (Ta) substrates. Carbon-silicon (C-Si) polymeric films have been formed by electron beam bombardment or ultraviolet (UV) radiation of molecularly adsorbed vinyl silane precursors on metal substrates under ultra-high vacuum (UHV) conditions. Temperature programmed desorption (TPD) studies show that polymerization is via the vinyl groups, while Auger electron spectroscopy (AES) results show that the polymerized films have compositions similar to the precursors. Films derived from vinyltrimethyl silane (VTMS) are adherent and stable on Ta substrates until 1100 K. Diffusion of deposited Cu overlayers is not observed below 800 K, with dewetting occurred only above 400 K. Hexafluorobenzene moieties can also be incorporated into the growing film with good thermal stability. Studies on the Ta substrates demonstrate that even sub-monolayer coverages of oxygen or carbide on polycrystalline ...
Contributing Partner: UNT Libraries
Adsorbate-enhanced Corrosion Processes at Iron and Iron Oxide Surfaces

Adsorbate-enhanced Corrosion Processes at Iron and Iron Oxide Surfaces

Date: December 1994
Creator: Murray, Eric
Description: This study was intended to provide a fuller understanding of the surface chemical processes which result in the corrosion of ferrous materials.
Contributing Partner: UNT Libraries
Aldohaloketenes and the Stereochemistry of Aldohaloketene Cycloadditions

Aldohaloketenes and the Stereochemistry of Aldohaloketene Cycloadditions

Date: May 1970
Creator: Hoff, Edwin Frank
Description: The objective of this research problem was to synthesize aldohaloketenes and investigate the chemistry of this new class of ketenes.
Contributing Partner: UNT Libraries
Aromatic Amino Acid Studies

Aromatic Amino Acid Studies

Date: December 1970
Creator: Sullivan, Patrick Timothy
Description: Pyridine ring analogs of the aromatic amino acids phenylalanine and tyrosine were synthesized and studied in microbiological and mammalian systems.
Contributing Partner: UNT Libraries
Biological Inhibitors

Biological Inhibitors

Date: December 1971
Creator: Sargent, Dale Roger
Description: Four isosteric series of plant growth-regulating compounds were prepared. Using an Avena sativa coleptile assay system, derivatives in series I and IV inhibited segment elongation to a greater degree than did comparable derivatives in series II and III.
Contributing Partner: UNT Libraries
Bonding Studies in Group IV Substituted n,n-dimethylanilines

Bonding Studies in Group IV Substituted n,n-dimethylanilines

Date: December 1971
Creator: Drews, Michael James
Description: The purpose of the present work is to study the effects of the trimethylsilyl and trimethylgermyl substituents on the N,N-dimethylamino ring system. Both ground and excited state interactions were studied and their magnitudes determined. The experimental data were then used in conjunction with molecular orbital calculations to differentiate among, and determine the importance of, d-p bonding, hyperconjugation or polarization of the trimethylsilyl group on the ground and excited state bonding.
Contributing Partner: UNT Libraries
Characterization of Low Barrier Hydrogen Bonds in Enzyme Catalysis: an Ab Initio and DFT Investigation

Characterization of Low Barrier Hydrogen Bonds in Enzyme Catalysis: an Ab Initio and DFT Investigation

Date: August 1999
Creator: Pan, Yongping
Description: Hartree-Fock, Moller-Plesset, and density functional theory calculations have been carried out using 6-31+G(d), 6-31+G(d,p) and 6-31++G(d,p) basis sets to study the properties of low-barrier or short-strong hydrogen bonds (SSHB) and their potential role in enzyme-catalyzed reactions that involve proton abstraction from a weak carbon-acid by a weak base. Formic acid/formate anion, enol/enolate and other complexes have been chosen to simulate a SSHB system. These complexes have been calculated to form very short, very short hydrogen bonds with a very low barrier for proton transfer from the donor to the acceptor. Two important environmental factors including small amount of solvent molecules that could possibly exist at the active site of an enzyme and the polarity around the active site were simulated to study their energetic and geometrical influences to a SSHB. It was found that microsolvation that improves the matching of pK as of the hydrogen bond donor and acceptor involved in the SSHB will always increase the interaction of the hydrogen bond; microsolvation that disrupts the matching of pKas, on the other hand, will lead to a weaker SSHB. Polarity surrounding the SSHB, simulated by SCRF-SCIPCM model, can significantly reduce the strength and stability of a SSHB. The residual strength ...
Contributing Partner: UNT Libraries
Chemical Equilibria in Binary Solvents

Chemical Equilibria in Binary Solvents

Date: August 1997
Creator: McHale, Mary E. R.
Description: Dissertation research involves development of Mobile Order Theory thermodynamic models to mathematically describe and predict the solubility, spectral properties, protonation equilibrium constants and two-phase partitioning behavior of solutes dissolved in binary solvent mixtures of analytical importance. Information gained provide a better understanding of solute-solvent and solvent-solvent interactions at the molecular level, which will facilitate the development of better chemical separation methods based upon both gas-liquid and high-performance liquid chromatography, and better analysis methods based upon complexiometric and spectroscopic methods. Dissertation research emphasizes chemical equilibria in systems containing alcohol cosolvents with the understanding that knowledge gained will be transferable to more environmentally friendly aqueous-organic solvent mixtures.
Contributing Partner: UNT Libraries
Computational studies of selected ruthenium catalysis reactions.

Computational studies of selected ruthenium catalysis reactions.

Date: December 2007
Creator: Barakat, Khaldoon A.
Description: Computational techniques were employed to investigate pathways that would improve the properties and characteristics of transition metal (i.e., ruthenium) catalysts, and to explore their mechanisms. The studied catalytic pathways are particularly relevant to catalytic hydroarylation of olefins. These processes involved the +2 to +3 oxidation of ruthenium and its effect on ruthenium-carbon bond strengths, carbon-hydrogen bond activation by 1,2-addition/reductive elimination pathways appropriate to catalytic hydrogen/deuterium exchange, and the possible intermediacy of highly coordinatively unsaturated (e.g., 14-electron) ruthenium complexes in catalysis. The calculations indicate a significant decrease in the Ru-CH3 homolytic bond dissociation enthalpy for the oxidation of TpRu(CO)(NCMe)(Me) to its RuIII cation through both reactant destabilization and product stabilization. This oxidation can thus lead to the olefin polymerization observed by Gunnoe and coworkers, since weak RuIII-C bonds would afford quick access to alkyl radical species. Calculations support the experimental proposal of a mechanism for catalytic hydrogen/deuterium exchange by a RuII-OH catalyst. Furthermore, calculational investigations reveal a probable pathway for the activation of C-H bonds that involves phosphine loss, 1,2-addition to the Ru-OH bond and then reversal of these steps with deuterium to incorporate it into the substrate. The presented results offer the indication for the net addition of aromatic C-H ...
Contributing Partner: UNT Libraries
Computational Study of Small Molecule Activation via Low-Coordinate Late First-Row Transition Metal Complexes

Computational Study of Small Molecule Activation via Low-Coordinate Late First-Row Transition Metal Complexes

Date: May 2010
Creator: Pierpont, Aaron
Description: Methane and dinitrogen are abundant precursors to numerous valuable chemicals such as methanol and ammonia, respectively. However, given the robustness of these substrates, catalytically circumventing the high temperatures and pressures required for such transformations has been a challenging task for chemists. In this work, computational studies of various transition metal catalysts for methane C-H activation and N2 activation have been carried out. For methane C-H activation, catalysts of the form LnM=E are studied, where Ln is the supporting ligand (dihydrophosphinoethane or β-diketiminate), E the activating ligand (O, NCH3, NCF3) at which C-H activation takes place, and M the late transition metal (Fe,Co,Ni,Cu). A hydrogen atom abstraction (HAA) / radical rebound (RR) mechanism is assumed for methane functionalization (CH4 à CH3EH). Since the best energetics are found for (β-diket)Ni=O and (β-diket)Cu=O catalysts, with or without CF3 substituents around the supporting ligand periphery, complete methane-to-methanol cycles were studied for such systems, for which N2O was used as oxygen atom transfer (OAT) reagent. Both monometallic and bimetallic OAT pathways are addressed. Monometallic Fe-N2 complexes of various supporting ligands (LnFe-N2) are studied at the beginning of the N2 activation chapter, where the effect of ligand on N2 activation in end-on vs. side-on N2 isomers ...
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 5 NEXT LAST