You limited your search to:

  Partner: UNT Libraries
 Country: United States
 Degree Discipline: Applied Geography
 Collection: UNT Theses and Dissertations
County Level Population Estimation Using Knowledge-Based Image Classification and Regression Models

County Level Population Estimation Using Knowledge-Based Image Classification and Regression Models

Date: August 2010
Creator: Nepali, Anjeev
Description: This paper presents methods and results of county-level population estimation using Landsat Thematic Mapper (TM) images of Denton County and Collin County in Texas. Landsat TM images acquired in March 2000 were classified into residential and non-residential classes using maximum likelihood classification and knowledge-based classification methods. Accuracy assessment results from the classified image produced using knowledge-based classification and traditional supervised classification (maximum likelihood classification) methods suggest that knowledge-based classification is more effective than traditional supervised classification methods. Furthermore, using randomly selected samples of census block groups, ordinary least squares (OLS) and geographically weighted regression (GWR) models were created for total population estimation. The overall accuracy of the models is over 96% at the county level. The results also suggest that underestimation normally occurs in block groups with high population density, whereas overestimation occurs in block groups with low population density.
Contributing Partner: UNT Libraries
Hydrological Impacts of Urbanization: White Rock Creek, Dallas Texas

Hydrological Impacts of Urbanization: White Rock Creek, Dallas Texas

Date: December 2005
Creator: Vicars, Julie Anne Groening
Description: This research project concerns changes in hydrology resulting from urbanization of the upper sub-basin of the White Rock Creek Watershed in Collin and Dallas Counties, Texas. The objectives of this study are: to calculate the percent watershed urbanized for the period of 1961 through 1968 and the period of 2000 through 2005; to derive a 1960s average unit hydrograph and a 2000s average unit hydrograph; and, to use the two averaged hydrographs to develop a range of hypothetical storm scenarios to evaluate how the storm response of the watershed has changed between these two periods. Results of this study show that stormflow occurs under lower intensity precipitation in the post-urbanized period and that stormflow peaks and volumes are substantially larger compared to the pre-urbanized period. It is concluded that changes in watershed surface conditions resulting from urbanization have lowered the precipitation-intensity threshold that must be surpassed before storm run-off is generated.
Contributing Partner: UNT Libraries