Search Results

Adherence/Diffusion Barrier Layers for Copper Metallization: Amorphous Carbon:Silicon Polymerized Films
Semiconductor circuitry feature miniaturization continues in response to Moore 's Law pushing the limits of aluminum and forcing the transition to Cu due to its lower resistivity and electromigration. Copper diffuses into silicon dioxide under thermal and electrical stresses, requiring the use of barriers to inhibit diffusion, adding to the insulator thickness and delay time, or replacement of SiO2 with new insulator materials that can inhibit diffusion while enabling Cu wetting. This study proposes modified amorphous silicon carbon hydrogen (a-Si:C:H) films as possible diffusion barriers and replacements for SiO2 between metal levels, interlevel dielectric (ILD), or between metal lines (IMD), based upon the diffusion inhibition of previous a-Si:C:H species expected lower dielectric constants, acceptable thermal conductivity. Vinyltrimethylsilane (VTMS) precursor was condensed on a titanium substrate at 90 K and bombarded with electron beams to induce crosslinking and form polymerized a-Si:C:H films. Modifications of the films with hydroxyl and nitrogen was accomplished by dosing the condensed VTMS with water or ammonia before electron bombardment producing a-Si:C:H/OH and a-Si:C:H/N and a-Si:C:H/OH/N polymerized films in expectation of developing films that would inhibit copper diffusion and promote Cu adherence, wetting, on the film surface. X-ray Photoelectron Spectroscopy was used to characterize Cu metallization of these a-Si:C:H films. XPS revealed substantial Cu wetting of a-Si:C:H/OH and a-Si:C:H/OH/N films and some wetting of a-Si:C:H/N films, and similar Cu diffusion inhibition to 800 K by all of the a-:S:C:H films. These findings suggest the possible use of a-Si:C:H films as ILD and IMD materials, with the possibility of further tailoring a-Si:C:H films to meet future device requirements.
Analysis of PAH and PCB Emissions from the Combustion of dRDF and the Nondestructive Analysis of Stamp Adhesives
This work includes two unrelated areas of research. The first portion of this work involved combusting densified refuse derived fuel (dRDF) with coal and studying the effect that Ca(0H)2 binder had on reducing polycyclic aromatic hydrocarbon (PAH) and polychlorinated biphenyl (PCB) emissions. The second area of work was directed at developing nondestructive infrared techniques in order to aid in the analysis of postage stamp adhesives. With Americans generating 150-200 million tons a year of Municipal Solid Waste (MSW) and disposing of nearly ninety percent of it in landfills, it is easy to understand why American landfills are approaching capacity. One alternative to landfilling is to process the MSW into RDF. There are technical and environmental problems associated with RDF. This work provides some answers concerning the amount of PAH and PCB emissions generated via the combustion of RDF with coal. It was found that the Ca(OH)2 binder greatly reduced both the PAH and the PCB emissions. In fact, PAH emissions at the ten-percent level were reduced more by using the binder than by the pollution control equipment. If the Ca(0H)2 binder can reduce not only PAH and PCB emissions, but also other noxious emissions, such as acid gases or dioxin, RDF technology could soon be the answer to the current landfill problems. The second portion of this work focused on developing a method to analyze stamp adhesives nondestructively. Using this method, it was fairly easy to differentiate among the three different types of adhesives that have been used by the United States Postal Service: gum arabic, dextrin, and polyvinyl alcohol. Differences caused by changes in chemicals added to the adhesives were also detected. Also, forgeries were detected with as much success, if not more, than by conventional methods. This work also led to the construction of equipment that allows large …
The Analysis of PCDD and PCDF Emissions from the Cofiring of Densified Refuse Derived Fuel and Coal
The United States leads the world in per capita production of Municipal Solid Waste (MSW), generating approximately 200 million tons per year. By 2000 A.D. the US EPA predicts a 20% rise in these numbers. Currently the major strategies of MSW disposal are (i) landfill and (ii) incineration. The amount of landfill space in the US is on a rapid decline. There are -10,000 landfill sites in the country, of which only 65-70% are still in use. The Office of Technology Assessment (OTA) predicts an 80% landfill closure rate in the next 20 years. The development of a viable energy resource from MSW, in the form of densified Refuse Derived Fuel (dRDF), provides solutions to the problems of MSW generation and fossil fuel depletions. Every 2 tons of MSW yields approximately 1 ton of dRDF. Each ton of dRDF has an energy equivalent of more than two barrels of oil. At current production rates the US is "throwing away" over 200,000,000 barrels of oil a year. In order to be considered a truly viable product dRDF must be extensively studied; in terms of it's cost of production, it's combustion properties, and it's potential for environmental pollution. In 1987 a research team from the University of North Texas, in conjunction with the US DOE and Argonne National Laboratory (ANL), cofired over 550 tons of dRDF and bdRDF with a high sulfur Kentucky coal in a boiler at ANL. This work examines the emission rates of polychlorinated dioxins (PCDDs) and furans (PCDFs) during the combustion of the dRDF, bdRDF, and coal. Even at levels of 50% by Btu content of dRDF in the fuel feedstock, emission rates of PCDDs and PCDFs were below detection limits. The dRDF is shown to be an environmentally acceptable product, which could help resolve one of the …
Calcium Silicates: Glass Content and Hydration Behavior
Pure, MgO doped and B2C3 doped monocalcium, dicalcium, and tricalcium silicates were prepared with different glass contents. Characterization of the anhydrous materials was carried out using optical microscopy, infrared absorption spectroscopy, and X-ray powder diffraction. The hydration of these compounds was studied as a function of the glass contents. The hydration studies were conducted at 25°C. Water/solid ratios of 0.5, 1, 10, and 16 were used for the various experiments. The hydration behavior was monitored through calorimetry, conductometry, pH measurements, morphological developments by scanning electron microscopy, phase development by X-ray powder diffraction, and percent combined water by thermogravimetry. A highly sensitive ten cell pseudo-adiabatic microcalorimeter was designed and constructed for early hydration studies. Conductometry was found to be of great utility in monitoring the hydration of monocalcium silicate and the borate doped dicalcium silicates.
Carbon Nanostructure Based Donor-acceptor Systems for Solar Energy Harvesting
Carbon nanostructure based functional hybrid molecules hold promise in solarenergy harvesting. Research presented in this dissertation systematically investigates building of various donor-acceptor nanohybrid systems utilizing enriched single walled carbon nanotube and graphene with redox and photoactive molecules such as fullerene, porphyrin, and phthalocyanine. Design, synthesis, and characterization of the donor-acceptor hybrid systems have been carefully performed via supramolecular binding strategies. Various spectroscopic studies have provided ample information in terms of establishment of the formation of donor-acceptor hybrids and their extent of interaction in solution and eventual rate of photoinduced electron and/or energy transfer. Electrochemical studies enabled construction of energy level diagram revealing energetic details of the possible different photochemical events supported by computational studies carried out to establish the HOMO-LUMO levels in the donor acceptor systems. Transient absorption studies confirmed formation of charge separated species in the donor-acceptor systems which have been supported by electron mediation experiments. Based on the photoelectrochemical studies, IPCE of 8% was reported for enriched SWCNT(7,6)-ZnP donor-acceptor systems. In summary, the present investigation on the various nanocarbon sensitized donor-acceptor hybrids substantiates tremendous prospect, that could very well become the next generation of materials in building efficient solar energy harvesting devices andphotocatalyst.
Characterization of Ionic Liquid Solvents Using a Temperature Independent, Ion-Specific Abraham Parameter Model
Experimental data for the logarithm of the gas-to-ionic liquid partition coefficient (log K) have been compiled from the published literature for over 40 ionic liquids over a wide temperature range. Temperature independent correlations based on the Gibbs free energy equation utilizing known Abraham solvation model parameters have been derived for the prediction of log K for 12 ionic liquids to within a standard deviation of 0.114 log units over a temperature range of over 60 K. Temperature independent log K correlations have also been derived from correlations of molar enthalpies of solvation and molar entropies of solvation, each within standard deviations of 4.044 kJ mol-1 and 5.338 J mol-1 K-1, respectively. In addition, molar enthalpies of solvation and molar entropies of solvation can be predicted from the Abraham coefficients in the temperature independent log K correlations to within similar standard deviations. Temperature independent, ion specific coefficients have been determined for 26 cations and 15 anions for the prediction of log K over a temperature range of at least 60 K to within a standard deviation of 0.159 log units.
Characterization of Novel Solvents and Absorbents for Chemical Separations
Predictive methods have been employed to characterize chemical separation mediums including solvents and absorbents. These studies included creating Abraham solvation parameter models for room-temperature ionic liquids (RTILs) utilizing novel ion-specific and group contribution methodologies, polydimethyl siloxane (PDMS) utilizing standard methodology, and the micelles cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfate (SDS) utilizing a combined experimental setup methodology with indicator variables. These predictive models allows for the characterization of both standard and new chemicals for use in chemical separations including gas chromatography (GC), solid phase microextraction (SPME), and micellar electrokinetic chromatography (MEKC). Gas-to-RTIL and water-to-RTIL predictive models were created with a standard deviation of 0.112 and 0.139 log units, respectively, for the ion-specific model and with a standard deviation of 0.155 and 0.177 log units, respectively, for the group contribution fragment method. Enthalpy of solvation for solutes dissolved into ionic liquids predictive models were created with ion-specific coefficients to within standard deviations of 1.7 kJ/mol. These models allow for the characterization of studied ionic liquids as well as prediction of solute-solvent properties of previously unstudied ionic liquids. Predictive models were created for the logarithm of solute's gas-to-fiber sorption and water-to-fiber sorption coefficient for polydimethyl siloxane for wet and dry conditions. These models were created to standard deviations of 0.198 and 0.122 logunits for gas-to-PDMS wet and dry, respectively, as well as 0.164 and 0.134 log units for water-to-PDMS wet and dry, respectively. These models are particularly useful in solid phase microextraction separations. Micelles were studied to create predictive models of the measured micelle-water partition coefficient as well as models of measured MEKC chromatographic retention factors for CTAB and SDS. The resultant predictive models were created with standard deviations of 0.190 log units for the logarithm of the mole fraction concentration of water-to-CTAB, 0.171 log units for the combined logarithms of both the …
Characterization of Post-Plasma Etch Residues and Plasma Induced Damage Evaluation on Patterned Porous Low-K Dielectrics Using MIR-IR Spectroscopy
As the miniaturization of functional devices in integrated circuit (IC) continues to scale down to sub-nanometer size, the process complexity increases and makes materials characterization difficult. One of our research effort demonstrates the development and application of novel Multiple Internal Reflection Infrared Spectroscopy (MIR-IR) as a sensitive (sub-5 nm) metrology tool to provide precise chemical bonding information that can effectively guide through the development of more efficient process control. In this work, we investigated the chemical bonding structure of thin fluorocarbon polymer films deposited on low-k dielectric nanostructures, using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Complemented by functional group specific chemical derivatization reactions, fluorocarbon film was established to contain fluorinated alkenes and carbonyl moieties embedded in a highly cross-linked, branched fluorocarbon structure and a model bonding structure was proposed for the first time. In addition, plasma induced damage to high aspect ratio trench low-k structures especially on the trench sidewalls was evaluated both qualitatively and quantitatively. Damage from different plasma processing was correlated with Si-OH formation and breakage of Si-CH3 bonds with increase in C=O functionality. In another endeavor, TiN hard mask defect formation after fluorocarbon plasma etch was characterized and investigated. Finding suggest the presence of water soluble amines that could possibly trigger the formation of TiN surface defect. An effective post etch treatment (PET) methods were applied for etch residue defect removal/suppression.
Chemical and Electronic Structure of Aromatic/Carborane Composite Films by PECVD for Neutron Detection
Boron carbide-aromatic composites, formed by plasma-enhanced co-deposition of carboranes and aromatic precursors, present enhanced electron-hole separation as neutron detector. This is achieved by aromatic coordination to the carborane icosahedra and results in improved neutron detection efficiency. Photoemission (XPS) and FTIR suggest that chemical bonding between B atoms in icosahedra and aromatic contents with preservation of π system during plasma process. XPS, UPS, density functional theory (DFT) calculations, and variable angle spectroscopic ellipsometery (VASE) demonstrate that for orthocarborane/pyridine and orthocarborane/aniline films, states near the valence band maximum are aromatic in character, while states near the conduction band minimum include those of either carborane or aromatic character. Thus, excitation across the band gap results in electrons and holes on carboranes and aromatics, respectively. Further such aromatic-carborane interaction dramatically shrinks the indirect band gap from 3 eV (PECVD orthocarborane) to ~ 1.6 eV (PECVD orthocarborane/pyridine) to ~1.0 eV (PECVD orthocarborane/aniline), with little variation in such properties with aromatic/orthocarborane stoichiometry. The narrowed band gap indicate the potential for greatly enhanced charge generation relative to PECVD orthocarborane films, as confirmed by zero-bias neutron voltaic studies. The results indicate that the enhanced electron-hole separation and band gap narrowing observed for aromatic/orthocarborane films relative to PECVD orthocarborane, has significant potential for a range of applications, including neutron detection, photovoltaics, and photocatalysis. Acknowledgements: This work was supported by the Defense Threat Reduction Agency (Grant No.HDTRA1-14-1-0041). James Hilfiker is also gratefully acknowledged for stimulating discussions.
Chemistry, Detection, and Control of Metals during Silicon Processing
This dissertation focuses on the chemistry, detection, and control of metals and metal contaminants during manufacturing of integrated circuits (ICs) on silicon wafers. Chapter 1 begins with an overview of IC manufacturing, including discussion of the common aqueous cleaning solutions, metallization processes, and analytical techniques that will be investigated in subsequent chapters. Chapter 2 covers initial investigations into the chemistry of the SC2 clean - a mixture of HCl, H2O2, and DI water - especially on the behavior of H2O2 in this solution and the impact of HCl concentration on metal removal from particle addition to silicon oxide surfaces. Chapter 3 includes a more generalized investigation of the chemistry of metal ions in solution and how they react with the silicon oxide surfaces they are brought into contact with, concluding with illumination of the fundamental chemical principles that govern their behavior. Chapter 4 shows how metal contaminants behave on silicon wafers when subjected to the high temperature (≥ 800 °C) thermal cycles that are encountered in IC manufacturing. It demonstrates that knowledge of some fundamental thermodynamic properties of the metals allow accurate prediction of what will happen to a metal during these processes. Chapter 5 covers a very different but related aspect of metal contamination control, which is the effectiveness of metal diffusion barriers (e.g. Ru) in holding a metal of interest, (e.g. Cu), where it is wanted while preventing it from migrating to places where it is not wanted on the silicon wafer. Chapter 6 concludes with an overview of the general chemical principles that have been found to govern the behavior of metals during IC manufacturing processes.
Cu Electrodeposition on Ru-Ta and Corrosion of Plasma Treated Cu in Post Etch Cleaning Solution
In this work, the possibility of Cu electrodeposition on Ru-Ta alloy thin films is explored. Ru and Ta were sputter deposited on Si substrate with different composition verified by RBS. Four point probe, XRD, TEM and AFM were used to study the properties of Ru-Ta thin films such as sheet resistance, crystallinity, grain size, etc. Cyclic voltammetry is used to study the Cu electrodeposition characteristics on Ru-Ta after various surface pretreatments. The results provide insights on the removal of Ta oxide such that it enables better Cu nucleation and adhesion. Bimetallic corrosion of Cu on modified Ru-Ta surface was studied in CMP related chemicals. In Cu interconnect fabrication process, the making of trenches and vias on low-k dielectric films involves the application of fluorocarbon plasma etch gases. Cu microdots deposited on Ru and Ta substrate were treated by fluorocarbon plasma etch gases such as CF4, CF4+O2, CH2F2, C4F8 and SF6 and investigated by using x-ray photoelectron spectroscopy, contact angle measurement and electrochemical techniques. Micropattern corrosion screening technique was used to measure the corrosion rate of plasma treated Cu. XPS results revealed different surface chemistry on Cu after treating with plasma etching. The fluorine/carbon ratio of the etching gases results in different extent of fluorocarbon polymer residues and affects the cleaning efficiency and Cu corrosion trends.
Cu Electrodeposition on Ru with a Chemisorbed Iodine Surface Layer.
An iodine surface layer has been prepared on Ru(poly) and Ru(0001) electrodes by exposure to iodine vapor in UHV and polarizing in a 0.1 M HClO4/0.005 M KI solution, respectively. A saturation coverage of I on a Ru(poly) electrode passivates the Ru surface against significant hydroxide, chemisorbed oxygen or oxide formation during exposure to water vapor over an electrochemical cell in a UHV-electrochemistry transfer system. Immersion of I-Ru(poly) results in greater hydroxide and chemisorbed oxygen formation than water vapor exposure, but an inhibition of surface oxide formation relative that of the unmodified Ru(poly) surface is still observed. Studies with combined electrochemical and XPS techniques show that the iodine surface adlayer remained on top of the surface after cycles of overpotential electrodeposition/dissolution of copper on both Ru(poly) and Ru(0001) electrodes. These results indicate the potential bifunctionality of iodine layer to both passivate the Ru surface in the microelectronic processing and to act as a surfactant for copper electrodeposition. The electrodeposition of Cu on Ru(0001) or polycrystalline Ru was studied using XPS with combined ultrahigh vacuum/electrochemistry methodology (UHV-EC) in 0.1 M HClO4 with Cu(ClO4)2 concentrations ranging from 0.005 M to 0.0005 M, and on polycrystalline Ru in a 0.05M H2SO4/0.005 M CuSO4/0.001 M NaCl solution. The electrochemical data show well-defined cyclic voltammograms (CV) with a Cu underpotential deposition (UPD) peak and overpotential deposition (OPD) peak. XPS spectra of Ru electrodes emersed from perchloric acid solution at cathodic potentials indicate that ClO4- anions dissociate to yield specifically adsorbed Cl and ClOx species. Subsequent Cu deposition results in the formation of a thin, insoluble Cu(II) film with Cu(I) underneath. In contrast, similar deposition on polycrystalline Ru in the sulfuric acid/Cu sulfate solution with NaCl added yields only Cu(0), indicating that the formation of Cu(II) and Cu(I) involves both Cl and perchlorate interactions with the …
Design and Development of Soft Landing Ion Mobility: A Novel Instrument for Preparative Material Development
The design and fabrication of a novel soft landing instrument Soft Landing Ion Mobility (SLIM) is described here. Topics covered include history of soft landing, gas phase mobility theory, the design and fabrication of SLIM, as well as applications pertaining to soft landing. Principle applications devised for this instrument involved the gas phase separation and selection of an ionized component from a multicomponent gas phase mixture as combing technique to optimize coatings, catalyst, and a variety of alternative application in the sciences.
Design Considerations and Implementation of Portable Mass Spectrometers for Environmental Applications
Portable mass spectrometers provide a unique opportunity to obtain in situ measurements. This minimizes need for sample collection or in laboratory analysis. Membrane Inlet Mass Spectrometry (MIMS) utilizing a semi permeable membrane for selective rapid introduction for analysis. Polydimethylsiloxane membranes have been proven to be robust in selecting for aromatic chemistries. Advances in front end design have allowed for increased sensitivity, rapid sample analysis, and on line measurements. Applications of the membrane inlet technique have been applied to environmental detection of clandestine drug chemistries and pollutants. Emplacement of a mass spectrometer unit in a vehicle has allowed for large areas to be mapped, obtaining a rapid snapshot of the various concentrations and types of environmental pollutants present. Further refinements and miniaturization have allowed for a backpackable system for analysis in remote harsh environments. Inclusion of atmospheric dispersion modeling has yielded an analytical method of approximating upwind source locations, which has law enforcement, military, and environmental applications. The atmospheric dispersion theories have further been applied to an earth based separation, whereby chemical properties are used to approximate atmospheric mobility, and chemistries are further identified has a portable mass spectrometer is traversed closer to a point source.
Development of a Laponite Pluronic Composite for Foaming Applications
The focus of the following research was to provide an optimized particle stabilized foam of Laponite and Pluronic L62 in water by understanding (1) the Laponite-Pluronic interactions and properties for improved performance in a particle stabilized foam and (2) the interfacial properties between air and the Laponite-Pluronic complex. These studies were conducted using both bulk and interfacial rheology, XRD, sessile droplet, TGA and UV-vis. Two novel and simple techniques, lamella break point and capillary breakup extensional rheometry, were used to both understand the Laponite Pluronic L62 interaction and determine a different mechanism for foaming properties. Bulk rheological properties identified an optimal Laponite concentration of 2% with Pluronic L62 ranging from 2.5% and 6.5%, due to the ease of flow for the dispersion. The Pluronic L62 was observed to enhance the Laponite bulk rheological properties in solution. Additionally TGA showed a similar trend in thermal resistance to water with both addition of Laponite and Pluronic L62. XRD demonstrated that 0.25% Pluronic intercalated into Laponite from dried 2% Laponite films. XRD demonstrated that the Laponite matrix was saturated at 1% Pluronic L62. UV-vis demonstrated that a monolayer of Pluronic L62 is observed up to 0.65% Pluronic L62 onto Laponite. Interfacial rheology showed that Laponite enhances Pluronic L62 at the air-liquid interface by improving the storage modulus as low at 0.65% Pluronic L62 with 2% Laponite. The lamella breakpoint of Laponite with Pluronic films indicate strong film interaction due to higher increases in mass. Extensional rheology indicates that 2.5% to 6.5% Pluronic with 2% Laponite show the most filament resistance to stretching.
The Development of an Analytical Microwave Electromagnetic Pulse Transmission Probe and Preliminary Test Results
Within this educational endeavor instrumental development was explored through the investigation of microwave induce stable electromagnetic waves within a non-linear yttrium iron garnet ferromagnetic waveguide. The resulting magnetostatic surface waves were investigated as a possible method of rapid analytical evaluation of material composition. Initial analytical results indicate that the interaction seen between wave and material electric and magnetic fields will allow phase coherence recovery andanalysis leading to enhancement of analytical value. The ferromagnetic waveguide selected for this research was a high quality monocrystalline YIG (yttrium iron garnet) film. Magnetostatic spin waves (MSW) were produced within the YIG thin waveguide. Spin waves with desired character were used to analytically scan materials within the liquid and solid phase.
Development of Novel Semi-conducting Ortho-carborane Based Polymer Films: Enhanced Electronic and Chemical Properties
A novel class of semi-conducting ortho-carborane (B10C2H12) based polymer films with enhanced electronic and chemical properties has been developed. The novel films are formed from electron-beam cross-linking of condensed B10C2H12 and B10C2H12 co-condensed with aromatic linking units (Y) (Y=1,4-diaminobenzene (DAB), benzene (BNZ) and pyridine (PY)) at 110 K. The bonding and electronic properties of the novel films were investigated using X-ray photoelectron spectroscopy (XPS), UV photoelectron spectroscopy (UPS) and Mulliken charge analysis using density functional theory (DFT). These films exhibit site-specific cross-linking with bonding, in the pure B10C2HX films, occurring at B sites non-adjacent to C in the B10C2H12 icosahedra. The B10C2H12:Y films exhibit the same phenomena, with cross-linking that creates bonds primarily between B sites non-adjacent to C in the B10C2H12 icosahedra to C sites in the Y linking units. These novel B10C2HX: Y linked films exhibit significantly different electron structure when compared to pure B10C2HX films as seen in the UPS spectra. The valence band maxima (VBM) shift from - 4.3 eV below the Fermi level for pure B10C2HX to -2.6, -2.2, and -1.7 for B10C2HX:BNZ, B10C2HX:PY, and B10C2HX:DAB, respectively. The top of the valence band is composed of states derived primarily from the Y linking units, suggesting that the bottom of the conduction band is composed of states primarily from B10C2H12. Consequently these B10C2HX:Y films may exhibit longer electron-hole separation lifetimes as compared to pure B10C2HX films. This research should lead to an enhancement of boron carbide based neutron detectors, and is of potential significance for microelectronics, spintronics and photo-catalysis.
Direct Atomic Level Controlled Growth and Characterization of h-BN and Graphene Heterostructures on Magnetic Substrates for Spintronic Applications
Epitaxial multilayer h-BN(0001) heterostructures and graphene/h-BN heterostructures have many potential applications in spintronics. The use of h-BN and graphene require atomically precise control and azimuthal alignment of the individual layers in the structure. These in turn require fabrication of devices by direct scalable methods rather than physical transfer of BN and graphene flakes, and such scalable methods are also critical for industrially compatible development of 2D devices. The growth of h-BN(0001) multilayers on Co and Ni, and graphene/h-BN(0001) heterostructures on Co have been studied which meet these criteria. Atomic Layer Epitaxy (ALE) of BN was carried out resulting in the formation of macroscopically continuous h-BN(0001) multilayers using BCl3 and NH3 as precursors. X-ray photoemission spectra (XPS) show that the films are stoichiometric with an average film thickness linearly proportional to the number of BCl3/NH3 cycles. Molecular beam epitaxy (MBE) of C yielded few layer graphene in azimuthal registry with BN/Co(0001) substrate. Low energy electron diffraction (LEED) measurements indicate azimuthally oriented growth of both BN and graphene layers in registry with the substrate lattice. Photoemission data indicate B:N atomic ratios of 1:1. Direct growth temperatures of 600 K for BN and 800 to 900 K for graphene MBE indicate multiple integration schemes for applications in spintronics.
Direct Inject Mass Spectrometry for Illicit Chemistry Detection and Characterization
The field of direct inject mass spectrometry includes a massive host of ambient ionization techniques that are especially useful for forensic analysts. Whether the sample is trace amounts of drugs or explosives or bulk amounts of synthetic drugs from a clandestine laboratory, the analysis of forensic evidence requires minimal sample preparation, evidence preservation, and high sensitivity. Direct inject mass spectrometry techniques can rarely provide all of these. Direct analyte-probed nanoextraction coupled to nanospray ionization mass spectrometry, however, is certainly capable of achieving these goals. As a multifaceted tool developed in the Verbeck laboratory, many forensic applications have since been investigated (trace drug and explosives analysis). Direct inject mass spectrometry can also be easily coupled to assays to obtain additional information about the analytes in question. By performing a parallel artificial membrane assay or a cell membrane stationary phase extraction prior to direct infusion of the sample, membrane permeability data and receptor activity data can be obtained in addition to the mass spectral data that was already being collected. This is particularly useful for characterizing illicit drugs and their analogues for a biologically relevant way to schedule new psychoactive substances.
The Effect of Plasma on Silicon Nitride, Oxynitride and Other Metals for Enhanced Epoxy Adhesion for Packaging Applications
The effects of direct plasma chemistries on carbon removal from silicon nitride (SiNx) and oxynitride (SiOxNy ) surfaces and Cu have been studied by x-photoelectron spectroscopy (XPS) and ex-situ contact angle measurements. The data indicate that O2,NH3 and He capacitively coupled plasmas are effective at removing adventitious carbon from silicon nitride (SiNx) and Silicon oxynitride (SiOxNy ) surfaces. O2plasma and He plasma treatment results in the formation of silica overlayer. In contrast, the exposure to NH3 plasma results in negligible additional oxidation of the SiNx and SiOxNy surface. Ex-situ contact angle measurements show that SiNx and SiOxNy surfaces when exposed to oxygen plasma are initially more hydrophilic than surfaces exposed to NH3 plasma and He plasma, indicating that the O2 plasma-induced SiO2 overlayer is highly reactive towards ambient corresponding to increased roughness measured by AFM. At longer ambient exposures (>~10 hours), however surfaces treated by either O2, He or NH3 plasma exhibit similar steady state contact angles, correlated with rapid uptake of adventitious carbon, as determined by XPS. Surface passivation by exposure to molecular hydrogen prior to ambient exposure significantly retards the increase in the contact angle upon the exposure to ambient. The results suggest a practical route to enhancing the time available for effective bonding to surfaces in microelectronics packaging applications.
Electrochemical Synthesis and Applications of Layered Double Hydroxides and Derivatives
Layered double hydroxides (LDH) are a class of anionic clay with alternating layers of positive and negative charge. A metal hydroxide layer with divalent and trivalent metals with a positive charge is complemented by an interlayer region containing anions and water with a negative charge. The anions can be exchanged under favorable conditions. Hydrotalcite (Mg6Al2(OH)16[CO3]·4H2O) and other variations are naturally occurring minerals. Synthetic LDH can be prepared as a powder or film by numerous methods. Synthetic LDH is used in electrode materials, adsorbents, nuclear waste treatment, drug delivery systems, water treatment, corrosion protection coatings, and catalysis. In this dissertation Zn-Al-NO3 derivatives of zaccagnaite (Zn4Al2(OH)12[CO3]·3H2O) are electrochemically synthesized as films and applied to sensing and corrosion resistance applications. First, Zn-Al-NO3 LDH was potentiostatically electrosynthesized on glassy carbon substrates and applied to the electrochemical detection of gallic acid and caffeic acid in aqueous solutions. The modified electrode was then applied to the detection of gallic acid in green tea samples. The focus of the work shifts to corrosion protection of stainless steel. Modified zaccagnaite films were electrodeposited onto stainless steel in multiples layers to reduce defects caused by drying of the films. The films were deposited using a step potential method. The corrosion resistance of the films in a marine environment was investigated while immersed in 3.5 wt.% NaCl environments. Next modified zaccagnaite films were potentiostatically electrodeposited onto stainless steel followed by a hydrophobization reaction with palmitic acid in order to prepare superhydrophobic (>150° contact angle) surfaces. Each parameter of the film synthesis was optimized to produce a surface with the highest possible contact angle. The fifth chapter examines the corrosion resistance of the optimized superhydrophobic film and a hydrophobic film. The hydrophobic film is prepared using the same procedure as the superhydrophobic film except for a difference in electrodeposition potential. The …
Electrochemical Synthesis and Characterization of Inorganic Materials from Aqueous Solutions
The dissertation consists of the following three sections: 1. Hydroxyapatite (HA) coatings. In this work, we deposited HA precursor films from weak basic electrolytic solution (pH= 8-9) via an electrochemical approach; the deposits were changed into crystallite coatings of hydroxyapatite by sintering at specific temperatures (600-800 ºC). The formed coatings were mainly characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). XRD patterns show well-defined peaks of HA when sintered under vacuum conditions. FTIR measurements indicate the existence of hydroxyl groups, which were confirmed by the characteristic intensity of the stretching and bending bands at ~3575 and ~630 cm-1, respectively. The SEM shows an adhesive, crack free morphology for the double-layer coating surface of the samples sintered in a vacuum furnace. 2. Silver/polymer/clay nanocomposites. Silver nanoparticles were prepared in layered clay mineral (montmorillonite)/polymer (PVP: poly (vinyl pyrrolidone)) suspension by an electrochemical approach. The silver particles formed in the bulk suspension were stabilized by the PVP and partially exfoliated clay platelets, which acted as protective colloids to prevent coagulation of silver nanoparticles together. The synthesized silver nanoparticles/montmorillonite/PVP composite was characterized and identified by XRD, SEM, and TEM (transmission electron microscopy) measurements. 3. Ce-doped lead zirconate titanate (PZT) thin films. In this study, we fabricated cerium-doped PZT films (molar ratio of Zr/Ti:: 0.5:0.5) via cathodic electrodeposition on the indium tin oxide ( ITO) coated glass substrate. In the preparation process, the PZT films were modified by adding a small amount of cerium dopants, which led to the formation of Ce-doped PZT films after sintering at high temperatures. The fabricated PZT films on the ITO coated glass substrate may be used as electro-optic devices in the industrial application.
Electrochemically Deposited Metal Alloy-silicate Nanocomposite Corrosion Resistant Materials
Zinc-nickel ?-phase silicate and copper-nickel silicate corrosion resistant coatings have been prepared via electrochemical methods to improve currently available corrosion resistant materials in the oil and gas industry. A layered silicate, montmorillonite, has been incorporated into the coatings for increased corrosion protection. For the zinc nickel silicate coatings, optimal plating conditions were determined to be a working pH range of 9.3 -9.5 with a borate based electrolyte solution, resulting in more uniform deposits and better corrosion protection of the basis metal as compared to acidic conditions. Quality, strongly adhering deposits were obtained quickly with strong, even overall coverage of the metal substrate. The corrosion current of the zinc-nickel-silicate coating is Icorr = 3.33E-6 for a borate based bath as compared to a zinc-nickel bath without silicate incorporation (Icorr = 3.52E-5). Step potential and direct potential methods were examined, showing a morphological advantage to step potential deposition. The effect of borate addition was examined in relation to zinc, nickel and zinc-nickel alloy deposition. Borate was found to affect the onset of hydrogen evolution and was examined for absorption onto the electrode surface. For copper-nickel silicate coatings, optimal conditions were determined to be a citrate based electrolytic bath, with pH = 6. The solutions were stable over time and strong adhering, compact particle deposits were obtained. The corrosion current of the copper-nickel-silicate coatings is Icorr = 3.86E-6 (copper-nickel coatings without silicate, Icorr = 1.78E-4). The large decrease in the corrosion current as the silicate is incorporated into the coating demonstrates the increase in corrosion resistance of the coatings with the incorporation of silicates.
Electrodeposited Metal Matrix Composites for Enhanced Corrosion Protection and Mechanical Properties
In the oil and gas industry, high corrosion resistance and hardness are needed to extend the lifetime of the coatings due to exposure to high stress and salt environments. Electrodeposition has become a favorable technique in synthesizing coatings because of low cost, convenience, and the ability to work at low temperatures. Electrodeposition of metal matrix composites has become popular for enhanced corrosion resistance and hardness in the oil and gas industry because of the major problems that persist with corrosion. Two major alloys of copper-nickel, 90-10 and 70-30, were evaluated for microbial corrosion protection in marine environments on a stainless steel substrate. Copper and copper alloys are commonly used in marine environments to resist biofouling of materials by inhibiting microbial growth. Literature surveying the electrodeposition of Cu-Ni incorporated with nano- to micro- particles to produce metal matrix composites has been reviewed. Also, a novel flow cell design for the enhanced deposition of metal matrix composites was examined to obtain the optimal oriented structure of the layered silicates in the metal matrix. With the addition of montmorillonite into the Ni and Cu-Ni matrix, an increase in strength, adhesion, wear and fracture toughness of the coating occurs, which leads to an increase corrosion resistance and longevity of the coating. These coatings were evaluated for composition and corrosion using many different types of instrumental and electrochemical techniques. The overall corrosion resistance and mechanical properties were improved with the composite films in comparison to the pure metals, which proves to be advantageous for many economic sectors including the oil and gas industry.
Electrodeposition of Nickel and Nickel Alloy Coatings with Layered Silicates for Enhanced Corrosion Resistance and Mechanical Properties
The new nickel/layered silicate nanocomposites were electrodeposited from different pHs to study the influence on the metal ions/layered silicate plating solution and on the properties of the deposited films. Nickel/layered silicate nanocomposites were fabricated from citrate bath atacidic pHs (1.6−3.0), from Watts’ type solution (pH ~4-5), and from citrate bath at basic pH (~9). Additionally, the new nickel/molybdenum/layered silicate nanocomposites were electrodeposited from citrate bath at pH 9.5. The silicate, montmorillonite (MMT), was exfoliated by stirring in aqueous solution over 24 hours. The plating solutions were analyzed for zeta potential, particle size, viscosity, and conductivity to investigate the effects of the composition at various pHs. The preferred crystalline orientation and the crystalline size of nickel, nickel/layered silicate, nickel/molybdenum, and nickel/molybdenum/layered silicate films were examined by X-ray diffraction. The microstructure of the coatings and the surface roughness was investigated by scanning electron microscopy and atomic force microscopy. Nickel/molybdenum/layered silicate nanocomposites containing low content of layered silicate (1.0 g/L) had increase 32 % hardness and 22 % Young’s modulus values over the pure nickel/molybdenum alloy films. The potentiodynamic polarization and electrochemical impedance measurements showed that the nickel/molybdenum/layered silicate nanocomposite layers have higher corrosion resistance in 3.5% NaCl compared to the pure alloy films. The corrosion current density of the nickel/molybdenum/layered silicate nanocomposite composed of 0.5 g/L MMT is 0.63 µA·cm-2 as compare to a nickel/molybdenum alloy which is 2.00 µA·cm-2.
Fabrication and light scattering study of multi-responsive nanostructured hydrogels and water-soluble polymers.
Monodispersed microgels composed of poly-acrylic acid (PAAc) and poly(N-isopropylacrylamide) (PNIPAM) interpenetrating networks were synthesized by 2-step method with first preparing PNIPAM microgel and then polymerizing acrylic acid that interpenetrates into the PNIPAM network. The semi-dilute aqueous solutions of the PNIPAM-PAAc IPN microgels exhibit an inverse thermo-reversible gelation. Furthermore, IPN microgels undergo the reversible volume phase transitions in response to both pH and temperature changes associated to PAAc and PNIPAM, respectively. Three applications based on this novel hydrogel system are presented: a rich phase diagram that opens a door for fundamental study of phase behavior of colloidal systems, a thermally induced viscosity change, and in situ hydrogel formation for controlled drug release. Clay-polymer hydrogel composites have been synthesized based on PNIPAM gels containing 0.25 to 4 wt% of the expandable smectic clay Na-montmorillonite layered silicates (Na-MLS). For Na-MLS concentrations ranging from 2.0 to 3.2 wt%, the composite gels have larger swelling ratio and stronger mechanical strength than those for a pure PNIPAM. The presence of Na-MLS does not affect the value of the lower critical solution temperature (LCST) of the PNIPAM. Surfactant-free hydroxypropyl cellulose (HPC) microgels have been synthesized in salt solution. In a narrow sodium chloride concentration range from 1.3 to 1.4 M, HPC chains can self-associate into colloidal particles at room temperature. The microgel particles were then obtained in situ by bonding self-associated HPC chains at 23 0C using divinyl sulfone as a cross-linker. The volume phase transition of the resultant HPC microgels has been studied as a function of temperature at various salt concentrations. A theoretical model based on Flory-Huggins free energy consideration has been used to explain the experimental results. Self-association behavior and conformation variation of long chain branched (LCB) poly (2-ethyloxazoline) (PEOx) with a CH3-(CH2)17 (C18) modified surface are investigated using light scattering techniques in various …
Forensic Analysis of Ink on Documents Using Direct Analyte-Probed Nanoextraction Coupled Techniques
Analzying questioned documents in a nondestructive nature has been an issue for the forensic science community. Using nondestructive techniques such as video spectral comparator does not give reliable information due to the variations in gray or color levels that are distinguished differently by analysts. Destructive techniques such as chromatography give dependable, qualitative and quantitative, information but involves altering the evidentiary value of these questioned documents. The paradox of document examination becomes a problem when document evidence is involved, especially when trying to preserve its evidentiary value and critical data is needed. Thus, a nondestructive technique has been developed to solve the loopholes in document examinations. Direct analyte-probed nanoextraction (DAPNe) is a nanomanipulation technique that extracts ink directly off the document for further examination. A watermark is left, at most, post-extraction. DAPNe utilizes a tip emitter, pre-filled with a solvent, which is controlled in x-, y-, and z-coordinates via joystick controller and aspirates/extracts using a pressure injector. The versatility of this technique lies within the solvent chemistry and its capability to be coupled to various types of instrumentation. The extraction solvent can be altered to target specific components in the ink. For example, a chelator may be added to target metal ions found in ancient inks or methanol may be added to target certain organic resins and binding agents found in modern inks. In this study, DAPNe has been coupled to nanospray ionization mass spectrometry, fluorescence microscopy, Raman spectroscopy, matrix-assisted laser desorption ionization mass spectrometry, and laser ablation to solve questioned document concerns in the area of falsified or forged documents, redacted documents, and aging studies.
Free Radical Chemistries at the Surface of Electronic Materials
The focus of the following research was to (1) understand the chemistry involved in nitriding an organosilicate glass substrate prior to tantalum deposition, as well as the effect nitrogen incorporation plays on subsequent tantalum deposition and (2) the reduction of a native oxide, the removal of surface contaminants, and the etching of a HgCdTe surface utilizing atomic hydrogen. These studies were investigated utilizing XPS, TEM and AFM. XPS data show that bombardment of an OSG substrate with NH3 and Ar ions results in the removal of carbon species and the incorporation of nitrogen into the surface. Tantalum deposition onto a nitrided OSG surface results in the initial formation of tantalum nitride with continued deposition resulting in the formation of tantalum. This process is a direct method for forming a thin TaN/Ta bilayer for use in micro- and nanoelectronic devices. Exposure to atomic hydrogen is shown to increase the surface roughness of both air exposed and etched samples. XPS results indicate that atomic hydrogen reduces tellurium oxide observed on air exposed samples via first-order kinetics. The removal of surface contaminants is an important step prior to continued device fabrication for optimum device performance. It is shown here that atomic hydrogen effectively removes adsorbed chlorine from the HgCdTe surface.
Free Radical Induced Oxidation, Reduction and Metallization of NiSi and Ni(Pt)Si Surfaces
NiSi and Ni(Pt)Si, and of the effects of dissociated ammonia on oxide reduction was carried out under controlled ultrahigh vacuum (UHV) conditions. X-ray photoelectron spectroscopy (XPS) has been used to characterize the evolution of surface composition. Vicinal surfaces on NiSi and Ni(Pt)Si were formed in UHV by a combination of Ar+ sputtering and thermal annealing. Oxidation of these surfaces in the presence of either O+O2 or pure O2 at room temperature results in the initial formation of a SiO2 layer ~ 7 Å thick. Subsequent exposure to O2 yields no further oxidation. Continued exposure to O+O2, however, results in rapid silicon consumption and, at higher exposures, the kinetically-driven oxidation of the transition metal(s), with oxides >35Ǻ thick formed on all samples, without passivation. The addition of Pt retards but does not eliminate oxide growth or Ni oxidation. At higher exposures, in Ni(Pt)Si surface the kinetically-limited oxidation of Pt results in Pt silicate formation. Substrate dopant type has almost no effect on oxidation rate. Reduction of the silicon oxide/metal silicate is carried out by reacting with dissociated NH3 at room temperature. The reduction from dissociated ammonia (NHx+H) on silicon oxide/ metal silicate layer shows selective reduction of the metal oxide/silicate layer, but does not react with SiO2 at ambient temperature.
Fundamental Studies of Copper Bimetallic Corrosion in Ultra Large Scale Interconnect Fabrication Process
In this work, copper bimetallic corrosion and inhibition in ultra large scale interconnect fabrication process is explored. Corrosion behavior of physical vapor deposited (PVD) copper on ruthenium on acidic and alkaline solutions was investigated with and without organic inhibitors. Bimetallic corrosion screening experiments were carried out to determine the corrosion rate. Potentiodynamic polarization experiments yielded information on the galvanic couples and also corrosion rates. XPS and FTIR surface analysis gave important information pertaining inhibition mechanism of organic inhibitors. Interestingly copper in contact with ruthenium in cleaning solution led to increased corrosion rate compared to copper in contact with tantalum. On the other hand when cobalt was in contact with copper, cobalt corroded and copper did not. We ascribe this phenomenon to the difference in the standard reduction potentials of the two metals in contact and in such a case a less noble metal will be corroded. The effects of plasma etch gases such as CF4, CF4+O2, C4F8, CH2F2 and SF6 on copper bimetallic corrosion was investigated too in alkaline solution. It was revealed that the type of etching gas plasma chemistry used in Cu interconnect manufacturing process creates copper surface modification which affects corrosion behavior in alkaline solution. The learning from copper bimetallic corrosion studies will be useful in the development of etch and clean formulations that will results in minimum defects and therefore increase the yield and reliability of copper interconnects.
Fundamental Studies of Copper Corrosion in Interconnect Fabrication Process and Spectroscopic Investigation of Low-k Structures
In the first part of this dissertation, copper bimetallic corrosion and its inhibition in cleaning processes involved in interconnect fabrication is explored. In microelectronics fabrication, post chemical mechanical polishing (CMP) cleaning is required to remove organic contaminants and particles left on copper interconnects after the CMP process. Use of cleaning solutions, however, causes serious reliability issues due to corrosion and recession of the interconnects. In this study, different azole compounds are explored and pyrazole is found out to be a potentially superior Cu corrosion inhibitor, compared to the most widely used benzotriazole (BTA), for tetramethyl ammonium hydroxide (TMAH)-based post CMP cleaning solutions at pH 14. Micropattern corrosion screening results and electrochemical impedance spectroscopy (EIS) revealed that 1 mM Pyrazole in 8 wt% TMAH solution inhibits Cu corrosion more effectively than 10 mM benzotriazole (BTA) under same conditions. Moreover, water contact angle measurement results also showed that Pyrazole-treated Cu surfaces are relatively hydrophilic compared to those treated with BTA/TMAH. X-ray photoelectron spectroscopy (XPS) analysis supports Cu-Pyrazole complex formation on the Cu surface. Overall Cu corrosion rate in TMAH-based highly alkaline post CMP cleaning solution is shown to be considerably reduced to less than 1Å/min by addition of 1 mM Pyrazole. In the second part, a novel technique built in-house called multiple internal Reflection Infrared Spectroscopy (MIR-IR) was explored as a characterization tool for characterization of different low-k structures.In leading edge integrated circuit manufacturing, reduction of RC time delay by incorporation of porous ultra low-k interlayer dielectrics into Cu interconnect nanostructure continues to pose major integration challenges. The main challenge is that porous structure renders interlayer dielectrics mechanically weak, chemically unstable and more susceptible to the RIE plasma etching damages. Besides the challenge of handling weak porous ultra low-k materials, a lack of sensitive metrology to guide systematic development of plasma etching, …
Hydrogen terminated silicon surfaces: Development of sensors to detect metallic contaminants and stability studies under different environments
Hydrogen terminated silicon surfaces have been utilized to develop sensors for semiconductor and environmental applications. The interaction of these surfaces with different environments has also been studied in detail. The sensor assembly relevant to the semiconductor industry utilizes a silicon-based sensor to detect trace levels of metallic contaminants in hydrofluoric acid. The sensor performance with respect to two non-contaminating reference electrode systems was evaluated. In the first case, conductive diamond was used as a reference electrode. In the second case, a dual silicon electrode system was used with one of the silicon-based electrodes protected with an anion permeable membrane behaving as the quasi reference electrode. Though both systems could function well as a suitable reference system, the dual silicon electrode design showed greater compatibility for the on-line detection of metallic impurities in HF etching baths. The silicon-based sensor assembly was able to detect parts- per-trillion to parts-per-billion levels of metal ion impurities in HF. The sensor assembly developed for the environmental application makes use of a novel method for the detection of Ni2+using attenuated total reflection (ATR) technique. The nickel infrared sensor was prepared on a silicon ATR crystal uniformly coated by a 1.5 micron Nafion film embedded with dimethylglyoxime (DMG) probe molecules. The detection of Ni2+ was based on the appearance of a unique infrared absorption peak at 1572 cm-1 that corresponds to the C=N stretching mode in the nickel dimethylglyoximate, Ni(DMG)2, complex. The suitable operational pH range for the nickel infrared sensor is between 6-8. The detection limit of the nickel infrared sensor is 1 ppm in the sample solution of pH=8. ATR - FTIR spectroscopy was used to study the changes that the hydride mode underwent when subjected to different environments. The presence of trace amounts of Cu2+ in HF solutions was found to roughen the silicon …
Interfacial Characterization of Chemical Vapor Deposition (Cvd) Grown Graphene and Electrodeposited Bismuth on Ruthenium Surface
Graphene receives enormous attention owing to its distinctive physical and chemical prosperities. Growing and transferring graphene to different substrates have been investigated. The graphene growing on the copper substrate has an advantage of low solubility of carbon on the copper which allow us to grow mostly monolayer graphene. Graphene sheet of few centimeters can be transferred to 300nm silicon oxide and quartz crystal pre-deposited with metal like Cu and Ru. Characterization of the graphene has been done with Raman and contact angle measurement and recently quartz crystal microbalance (QCM) has been employed. The underpotential deposition (UPD) process of Bi on Ru metal surface is studied using electrochemical quartz crystal microbalance (EQCM) and XPS techniques. Both Bi UPD and Bi bulk deposition are clearly observed on Ru in 1mM Bi (NO3)3/0.5M H2SO4. Bi monolayer coverage calculated from mass (MLMass) and from charge (MLCharge) were compared with respect to the potential scanning rates, anions and ambient controls. EQCM results indicate that Bi UPD on Ru is mostly scan rate independent but exhibits interesting difference at the slower scan. Bi UPD monolayer coverage calculated from cathodic frequency change (ΔfCathodic) is significantly smaller than the monolayer coverage derived from integrated charge under the cathodic Bi UPD peak when scan rate is at least 5 mV/s. XPS is utilized to explore the detailed chemical composition of the observed interfacial process of Bi UPD on Ru.
Interfacial Electrochemistry and Surface Characterization: Hydrogen Terminated Silicon, Electrolessly Deposited Palladium & Platinum on Pyrolyzed Photoresist Films and Electrodeposited Copper on Iridium
Hydrogen terminated silicon surfaces play an important role in the integrated circuit (IC) industry. Ultra-pure water is extensively used for the cleaning and surface preparation of silicon surfaces. This work studies the effects of ultra-pure water on hydrogen passivated silicon surfaces in a short time frame of 120 minutes using fourier transform infrared spectroscopy – attenuated total reflection techniques. Varying conditions of ultra-pure water are used. This includes dissolved oxygen poor media after nitrogen bubbling and equilibration under nitrogen atmosphere, as well as metal contaminated solutions. Both microscopically rough and ideal monohydride terminated surfaces are examined. Hydrogen terminated silicon is also used as the sensing electrode for a potentiometric sensor for ultra-trace amounts of metal contaminants. Previous studies show the use of this potentiometric electrode sensor in hydrofluoric acid solution. This work is able to shows sensor function in ultra-pure water media without the need for further addition of hydrofluoric acid. This is considered a boon for the sensor due to the hazardous nature of hydrofluoric acid. Thin carbon films can be formed by spin coating photoresist onto silicon substrates and pyrolyzing at 1000 degrees C under reducing conditions. This work also shows that the electroless deposition of palladium and platinum may be accomplished in hydrofluoric acid solutions to attain palladium and platinum nanoparticles on a this film carbon surface for use as an electrode. Catalysis of these substrates is studied using hydrogen evolution in acidic media, cyclic voltammetry, and catalysis of formaldehyde. X-ray diffractometry (XRD) is used to ensure that there is little strain on palladium and platinum particles. Iridium is thought to be a prime candidate for investigation as a new generation copper diffusion barrier for the IC industry. Copper electrodeposition on iridium is studied to address the potential of iridium as a copper diffusion barrier. Copper electrodeposition …
Interfacial Electrochemistry of Copper and Spectro-Electrochemical Characterization of Oxygen Reduction Reaction
The first part of this dissertation highlights the contents of the electrochemical characterization of Cu and its electroplating on Ru-based substrates. The growth of Ru native oxide does diminish the efficiency of Cu plating on Ru surface. However, the electrochemical formed irreversible Ru hydrate dioxide (RuOxHy) shows better coverage of Cu UPD. The conductive Ru oxides are directly plateable liner materials as potential diffusion barriers for the IC fabrication. The part II of this dissertation demonstrates the development of a new rapid corrosion screening methodology for effective characterization Cu bimetallic corrosion in CMP and post-CMP environments. The corrosion inhibitors and antioxidants were studied in this dissertation. In part III, a new SEC methodology was developed to study the ORR catalysts. This novel SEC cell can offer cheap, rapid optical screening results, which helps the efficient development of a better ORR catalyst. Also, the SEC method is capable for identifying the poisoning of electrocatalysts. Our data show that the RuOxHy processes several outstanding properties of ORR such as high tolerance of sulfation, high kinetic current limitation and low percentage of hydrogen peroxide.
Interfacial Electrochemistry of Cu/Al Alloys for IC Packaging and Chemical Bonding Characterization of Boron Doped Hydrogenated Amorphous Silicon Films for Infrared Cameras
We focused on a non-cooling room temperature microbolometer infrared imaging array device which includes a sensing layer of p-type a-Si:H component layers doped with boron. Boron incorporation and bonding configuration were investigated for a-Si:H films grown by plasma enhanced chemical deposition (PECVD) at varying substrate temperatures, hydrogen dilution of the silane precursor, and dopant to silane ratio using multiple internal reflection infrared spectroscopy (MIR-IR). This study was then confirmed from collaborators via Raman spectroscopy. MIR-IR analyses reveal an interesting counter-balance relationship between boron-doping and hydrogen-dilution growth parameters in PECVD-grown a-Si:H. Specifically, an increase in the hydrogen dilution ratio (H2/SiH4) or substrate temperature was found to increase organization of the silicon lattice in the amorphous films. It resulted in the decrease of the most stable SiH bonding configuration and thus decrease the organization of the film. The new chemical bonding information of a-Si:H thin film was correlated with the various boron doping mechanisms proposed by theoretical calculations. The study revealed the corrosion morphology progression on aluminum alloy (Al, 0.5% Cu) under acidic chloride solution. This is due to defects and a higher copper content at the grain boundary. Direct galvanic current measurement, linear sweep voltammetry (LSV), and Tafel plots are used to measure corrosion current and potential. Hydrogen gas evolution was also observed (for the first time) in Cu/Al bimetallic interface in areas of active corrosion. Mechanistic insight that leads to effective prevention of aluminum bond pad corrosion is explored and discussed. (Chapter 4) Aluminum bond pad corrosion activity and mechanistic insight at a Cu/Al bimetallic interface typically used in microelectronic packages for automotive applications were investigated by means of optical and scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and electrochemistry. Screening of corrosion variables (temperature, moisture, chloride ion concentration, pH) have been investigated to find their effect on …
Interfacial Electrochemistry of Metal Nanoparticles Formation on Diamond and Copper Electroplating on Ruthenium Surface
An extremely facile and novel method called spontaneous deposition, to deposit noble metal nanoparticles on a most stable form of carbon (C) i.e. diamond is presented. Nanometer sized particles of such metals as platinum (Pt), palladium (Pd), gold (Au), copper (Cu) and silver (Ag) could be deposited on boron-doped (B-doped) polycrystalline diamond films grown on silicon (Si) substrates, by simply immersing the diamond/Si sample in hydrofluoric acid (HF) solution containing ions of the corresponding metal. The electrons for the reduction of metal ions came from the Si back substrate. The diamond/Si interfacial ohmic contact was of paramount importance to the observation of the spontaneous deposition process. The metal/diamond (M/C) surfaces were investigated using Raman spectroscopy, scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and x-ray diffractometry (XRD). The morphology (i.e. size and distribution) of metal nanoparticles deposits could be controlled by adjusting the metal ion concentration, HF concentration and deposition time. XRD data indicate the presence of textured and strained crystal lattices of Pd for different Pd/C morphologies, which seem to influence the electrocatalytic oxidation of formaldehyde (HCHO). The sensitivity of electrocatalytic reactions to surface crystal structure implies that M/C could be fabricated for specific electrocatalytic applications. The research also presents electroplating of Cu on ruthenium (Ru), which a priori is a promising barrier material for Cu interconnects in the sub 0.13 μm generation integrated circuits (ICs). Cu plates on Ru with over 90% efficiency. The electrochemical nucleation and growth studies using the potentiostatic current transient method showed a predominantly progressive nucleation of Cu on Ru. This was also supported by SEM imaging, which showed that continuous thin films of Cu (ca. 400 Å) with excellent conformity could be plated over Ru without dendrite formation. Scotch tape peel tests and SEM on Cu/Ru samples both at room temperature (RT) and …
Investigation of Novel Electrochemical Synthesis of Bioapatites and Use in Elemental Bone Analysis
In this research, electrochemical methods are used to synthesize the inorganic fraction of bone, hydroxyapatite, for application in biological implants and as a calibration material for elemental analysis in human bone. Optimal conditions of electrochemically deposited uniform apatite coatings on stainless steel were investigated. Apatite is a ceramic with many different phases and compositions that have beneficial characteristics for biomedical applications. Of those phases hydroxyapatite (HA) is the most biocompatible and is the primary constituent of the inorganic material in bones. HA coatings on metals and metal alloys have the ability to bridge the growth between human tissues and implant interface, where the metal provides the strength and HA provides the needed bioactivity. The calcium apatites were electrochemically deposited using a modified simulated body fluid adjusted to pH 4-10, for 1-3 hours at varying temperature of 25-65°C while maintaining cathodic potentials of -1.0 to -1.5V. It was observed that the composition and morphology of HA coatings change during deposition by the concentration of counter ions in solution, pH, temperature, applied potential, and post-sintering. The coatings were characterized by powder x-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The precipitated powders from the experiment were also characterized, with results showing similarities to biological apatite. There is a need for quantitative elemental analysis of calcified biological matrices such as bone and teeth; however there are no suitable calibration materials commercially available for quantitative analysis. Matrix-matched standards are electrochemically synthesized for LA-ICP-MS analysis of human bone. The synthetic bioapatite is produced via a hydrothermal electrochemical process using a simulated body fluid solution to form hydroxyapatite. Additional bioapatite standards are synthesized containing trace amounts of metals. The x-ray diffraction of the synthesized standards shows an increase in cell volume for the crystal structure from 0.534 to 0.542 nm3 with the substitution of …
Investigation of Post-Plasma Etch Fluorocarbon Residue Characterization, Removal and Plasma-Induced Low-K Damage for Advanced Interconnect Applications
Modern three-dimensional integrated circuit design is rapidly evolving to more complex architecture. With continuous downscaling of devices, there is a pressing need for metrology tool development for rapid but efficient process and material characterization. In this dissertation work, application of a novel multiple internal reflection infrared spectroscopy metrology is discussed in various semiconductor fabrication process development. Firstly, chemical bonding structure of thin fluorocarbon polymer film deposited on patterned nanostructures was elucidated. Different functional groups were identified by specific derivatization reactions and model bonding configuration was proposed for the first time. In a continued effort, wet removal of these fluorocarbon polymer was investigated in presence of UV light. Mechanistic hypothesis for UV-assisted enhanced polymer cleaning efficiency was put forward supported by detailed theoretical consideration and experimental evidence. In another endeavor, plasma-induced damage to porous low-dielectric constant interlayer dielectric material was studied. Both qualitative and quantitative analyses of dielectric degradation in terms of increased silanol content and carbon depletion provided directions towards less aggressive plasma etch and strip process development. Infrared spectroscopy metrology was also utilized in surface functionalization evaluation of very thin organic films deposited by wet and dry chemistries. Palladium binding by surface amine groups was examined in plasma-polymerized amorphous hydrocarbon films and in self-assembled aminosilane thin films. Comparison of amine concentration under different deposition conditions guided effective process optimization. A time- and cost-effective method such as current FTIR metrology that provides in-depth chemical information about thin films, surfaces, interfaces and bulk layers can be increasingly valuable as critical dimensions continue to scale down and subtle process variances begin to have a significant impact on device performance.
Lipidomic Analysis of Single Cells and Organelles Using Nanomanipulation Coupled to Mass Spectrometry
The capability to characterize disease states by way of determining novel biomarkers has led to a high demand of single cell and organelle analytical methodologies due to the unexpected heterogeneity present in cells of the same type. Lipids are of particular interest in the search for biomarkers due to their active roles in cellular metabolism and energy storage. Analyzing localized lipid chemistry from individual cells and organelles is challenging however, due to low analyte volume, limited discriminate instrumentation, and common requirements of separation procedures and expenditure of cell sample. Using nanomanipulation in combination with mass spectrometry, individual cells and organelles can be extracted from tissues and cultures in vitro to determine if heterogeneity at the cellular level is present. The discriminate extraction of a single cell or organelle allows the remainder of cell culture or tissue to remain intact, while the high sensitivity and chemical specificity of mass spectrometry provides structural information for limited volumes without the need for chromatographic separation. Mass analysis of lipids extracted from individual cells can be carried out in multiple mass spectrometry platforms through direct-inject mass spectrometry using nanoelectrospray-ionization and through matrix-assisted laser/desorption ionization.
Metal Oxide Reactions in Complex Environments: High Electric Fields and Pressures above Ultrahigh Vacuum
Metal oxide reactions at metal oxide surfaces or at metal-metal oxide interfaces are of exceptional significance in areas such as catalysis, micro- and nanoelectronics, chemical sensors, and catalysis. Such reactions are frequently complicated by the presence of high electric fields and/or H2O-containing environments. The focus of this research was to understand (1) the iron oxide growth mechanism on Fe(111) at 300 K and 500 K together with the effect of high electric fields on these iron oxide films, and (2) the growth of alumina films on two faces of Ni3Al single crystal and the interaction of the resulting films with water vapor under non-UHV conditions. These studies were conducted with AES, LEED, and STM. XPS was also employed in the second study. Oxidation of Fe(111) at 300 K resulted in the formation of Fe2O3 and Fe3O4. The substrate is uniformly covered with an oxide film with relatively small oxide islands, i.e. 5-15 nm in width. At 500 K, Fe3O4 is the predominant oxide phase formed, and the growth of oxide is not uniform, but occurs as large islands (100 - 300 nm in width) interspersed with patches of uncovered substrate. Under the stress of STM induced high electric fields, dielectric breakdown of the iron oxide films formed at 300 K occurs at a critical bias voltage of 3.8 ± 0.5 V at varying field strengths. No reproducible result was obtained from the high field stress studies of the iron oxide formed at 500 K. Ni3Al(110) and Ni3Al(111) were oxidized at 900 K and 300 K, respectively. Annealing at 1100 K was required to order the alumina films in both cases. The results demonstrate that the structure of the 7 Å alumina films on Ni3Al(110) is k-like, which is in good agreement with the DFT calculations. Al2O3/Ni3Al(111) (γ'-phase) and Al2O3/Ni3Al(110) (κ-phase) …
Methods Development for Simultaneous Determination of Anions and Cations by Ion Chromatography
The problem with which this research is concerned is the determination of inorganic anions and cations with single injection ion chromatography. Direct detection of the separated analyte ions occurs after the analyte ions have passed through ion-exchange resins where they are separated according to their affinity for the ion-exchange resin active sites. The techniques involve the use of essentially a non-suppressed ion chromatographic system followed by a suppressed ion chromatographic system. With this system it is possible to accomplish both qualitative and quantitative determinations.
Miniature Mass Spectrometry: Theory, Development and Applications
As mass analyzer technology has continued to improve over the last fifty years, the prospect of field-portable mass spectrometers has garnered interest from many research groups and organizations. Designing a field portable instrument entails more than the scaling down of current commercial systems. Additional considerations such as power consumption, vacuum requirements and ruggedization also play key roles. In this research, two avenues were pursued in the initial development of a portable system. First, micrometer-scale mass analyzers and other electrostatic components were fabricated using silicon on insulator-deep reactive ion etching, and tested. Second, the dimensions of an ion trap were scaled to the millimeter level and fabricated from common metals and commercially available vacuum plastics. This instrument was tested for use in ion isolation and collision induced dissociation for secondary mass spectrometry and confirmatory analyses of unknowns. In addition to portable instrumentation, miniature mass spectrometers show potential for usage in process and reaction monitoring. To this end, a commercial residual gas analyzer was used to monitor plasma deposition and cleaning inside of a chamber designed for laser ablation and soft landing-ion mobility to generate metal-main group clusters. This chamber was also equipped for multiple types of spectral analysis in order to identify and characterize the clusters. Finally, a portion of this research was dedicated to method development in sample collection and analysis for forensic study. A new method for the analysis of illicit chemistries collected via electrostatic lifting is presented. This method incorporates surface-enhanced Raman microscopy as a prescreening tool for nanoextraction and nanospray ionization mass spectrometry.
Model Development for the Catalytic Calcination of Calcium Carbonate
Lime is one of the largest manufactured chemicals in the United States. The conversion of calcium carbonate into calcium oxide is an endothermic reaction and requires approximately two to four times the theoretical quantity of energy predicted from thermodynamic analysis. With the skyrocketing costs of fossil fuels, how to decrease the energy consumption in the calcination process has become a very important problem in the lime industry. In the present study, many chemicals including lithium carbonate, sodium carbonate, potassium carbonate, lithium chloride, magnesium chloride, and calcium chloride have been proved to be the catalysts to enhance the calcination rate of calcium carbonate. By mixing these chemicals with pure calcium carbonate, these additives can increase the calcination rate of calcium carbonate at constant temperatures; also, they can complete the calcination of calcium carbonate at relatively low temperatures. As a result, the energy required for the calcination of calcium carbonate can be decreased. The present study has aimed at developing a physical model, which is called the extended shell model, to explain the results of the catalytic calcination. In this model, heat transfer and mass transfer are two main factors used to predict the calcination rate of calcium carbonate. By using the extended shell model, not only the catalytic calcination but also the inhibitive calcination of calcium carbonate have been explained.
Novel Carborane Derived Semiconducting Thin Films for Neutron Detection and Device Applications
Novel carborane (B10C2H12) and aromatic compounds (benzene, pyridine, diaminobenzene) copolymers and composite materials have been fabricated by electron beam induced cross-linking and plasma enhanced chemical vapor deposition (PECVD) respectively. Chemical and electronic structure of these materials were studied using X-ray and ultra-violet photoelectron spectroscopy (XPS and UPS). UPS suggest that the systematic tuning of electronic structure can be achieved by using different aromatic compounds as co-precursors during the deposition. Furthermore, top of valence band is composed of states from the aromatic moieties implying that states near bottom of the conduction band is derived from carborane moieties. Current- voltage (I-V) measurements on the ebeam derived B10C2HX: Diaminobenzene films suggest that these films exhibit enhanced electron hole separation life time. Enhanced electron hole separation and charge transport are critical parameters in designing better neutron voltaic devices. Recently, PECVD composite films of ortho-carborane and pyridine exhibited enhanced neutron detection efficiency even under zero bias compared to the pure ortho-carborane derived films. This enhancement is most likely due to longer electron-hole separation, better charge transport or a combination of both. The studies determining the main factors for the observed enhanced neutron detection are in progress by fabricating composite films of carborane with other aromatic precursors and by altering the plasma deposition conditions. This research will facilitate the development of highly sensitive and cost effective neutron detectors, and has potential applications in spintronics and photo-catalysis.
Process Evaluation and Characterization of Tungsten Nitride as a Diffusion Barrier for Copper Interconnect Technology
The integration of copper (Cu) and dielectric materials has been outlined in the International Technology Roadmap for Semiconductors (ITRS) as a critical goal for future microelectronic devices. A necessity toward achieving this goal is the development of diffusion barriers that resolve the Cu and dielectric incompatibility. The focus of this research examines the potential use of tungsten nitride as a diffusion barrier by characterizing the interfacial properties with Cu and evaluating its process capability for industrial use. Tungsten nitride (β-W2N) development has been carried out using a plasma enhanced chemical vapor deposition (PECVD) technique that utilizes tungsten hexafluoride (WF6), nitrogen (N2), hydrogen (H2), and argon (Ar). Two design of experiments (DOE) were performed to optimize the process with respect to film stoichiometry, resistivity and uniformity across a 200 mm diameter Si wafer. Auger depth profiling showed a 2:1 W:N ratio. X-ray diffraction (XRD) showed a broad peak centered on the β-W2N phase. Film resistivity was 270 mohm-cm and film uniformity < 3 %. The step coverage (film thickness variance) across a structured etched dielectric (SiO2, 0.35 mm, 3:1 aspect ratio) was > 44 %. Secondary ion mass spectroscopy (SIMS) measurements showed good barrier performance for W2N between Cu and SiO2 with no intermixing of the Cu and silicon when annealed to 390o C for 3 hours. Cu nucleation behavior and thermal stability on clean and nitrided tungsten foil (WxN = δ-WN and β-W2N phases) have been characterized by Auger electron spectroscopy (AES) and thermal desorption spectroscopy (TDS) under controlled ultra high vacuum (UHV) conditions. At room temperature, the Auger intensity ratio vs. time plots demonstrates layer by layer Cu growth for the clean tungsten (W) surface and three-dimensional nucleation for the nitride overlayer. Auger intensity ratio vs. temperature measurements for the Cu/W system indicates a stable interface up to 1000 …
The Quantitative Determination of Glass in Slag and Fly Ash by Infrared Spectroscopy
The present study was aimed at developing a new inexpensive and accurate analytical method for determining the glass content of slag and fly ash. Infrared absorption spectroscopy using an internal standard proved to be the method of choice. Both synthetic and commercial slags and fly ashes were investigated.
Reactivity of Oxide Surfaces and Metal-Oxide Interfaces: Effects of Water Vapor Pressure on Ultrathin Aluminum Oxide Films, and Studies of Platinum Growth Modes on Ultrathin Oxide Films and Their Effects on Adhesion
The reactivity of oxide surfaces and metal-oxide interfaces play an important role in many technological applications such as corrosion, heterogeneous catalysis, and microelectronics. The focus of this research was (1) understanding the effects of water vapor exposure of ultrathin aluminum oxide films under non-ultrahigh vacuum conditions (>10-9 Torr) and (2) characterization of Pt growth modes on ultrathin Ta silicate and silicon dioxide films and the effects of growth modes on adhesion of a Cu overlayer. These studies were conducted with X-ray photoelectron spectroscopy (XPS). Ni3Al(110) was oxidized (10-6 Torr O2, 800K) followed by annealing (1100K). The data indicate that the annealed oxide film is composed of NiO, Al2O3 and an intermediate phase denoted here as "AlOx". Upon exposure of the oxide film at ambient temperature to increasing water vapor pressure (10-6 - 5 Torr), a shift in both the O(1s) and Al(2p)oxide peak maxima to lower binding energies is observed. In contrast, exposure of Al2O3/Al(polycrystalline) to water vapor under the same conditions results in a high binding energy shoulder in the O(1s) spectra which indicates hydroxylation. Spectral decomposition provides further insight into the difference in reactivity between the two oxide films. The corresponding trends of the O(1s)/Ni0(2p3/2) and Al(2p)/Ni0(2p3/2) spectral intensity ratios suggest conformal changes of the oxide film on Ni3Al(110). The growth behavior of sputter deposited Pt at ~300K on Ta silicate and SiO2 ultrathin films formed on Si(100) was investigated. The XPS data show that Pt deposition results in uniform growth or "wetting" on Ta silicate and 2-D cluster growth on SiO2. Electroless Cu deposition on ~11 monolayers (ML) Pt/Ta silicate film results in an adherent Cu film which passed the Scotch tape test. In contrast, electroless Cu deposition on ~11ML Pt/SiO2 results in a non-adherent Cu film due to weak Pt/SiO2 interaction.
The Revival of Electrochemistry: Electrochemical Deposition of Metals in Semiconductor Related Research
Adherent Cu films were electrodeposited onto polycrystalline W foils from purged solutions of 0.05 M CuSO4 in H2SO4 supporting electrolyte and 0.025 M CuCO3∙Cu(OH)2 in 0.32 M H3BO3 and corresponding HBF4 supporting electrolyte, both at pH = 1. Films were deposited under constant potential conditions at voltages between -0.6 V and -0.2 V versus Ag/AgCl. All films produced by pulses of 10 s duration were visible to the eye, copper colored, and survived a crude test called "the Scotch tape test", which involves sticking the scotch tape on the sample, then peeling off the tape and observing if the copper film peels off or not. Characterization by scanning electron microscopy (SEM)/energy dispersive X-ray (EDX) and X-ray photon spectroscopy (XPS) confirmed the presence of metallic Cu, with apparent dendritic growth. No sulfur impurity was observable by XPS or EDX. Kinetics measurements indicated that the Cu nucleation process in the sulfuric bath is slower than in the borate bath. In both baths, nucleation kinetics does not correspond to either instantaneous or progressive nucleation. Films deposited from 0.05 M CuSO4/H2SO4 solution at pH > 1 at -0.2 V exhibited poor adhesion and decreased Cu reduction current. In both borate and sulfate baths, small Cu nuclei are observable by SEM upon deposition at higher negative overpotentials, while only large nuclei (~ 1 micron or larger) are observed upon deposition at less negative potentials. Osmium metal has been successfully electrodeposited directly onto p-Si (100) from both Os3+ and Os4+ in both sulfuric and perchloric baths. This electrochemical deposition of osmium metal can provide sufficient amount of osmium which overcome ion beam implantation limitations. The deposited metal can undergo further processing to form osmium silicides, such as Os2Si3, which can be used as optical active materials. The higher osmium concentration results in large deposition currents and …
Selectivity Failure in the Chemical Vapor Deposition of Tungsten
Tungsten metal is used as an electrical conductor in many modern microelectronic devices. One of the primary motivations for its use is that it can be deposited in thin films by chemical vapor deposition (CVD). CVD is a process whereby a thin film is deposited on a solid substrate by the reaction of a gas-phase molecular precursor. In the case of tungsten chemical vapor deposition (W-CVD) this precursor is commonly tungsten hexafluoride (WF6) which reacts with an appropriate reductant to yield metallic tungsten. A useful characteristic of the W-CVD chemical reactions is that while they proceed rapidly on silicon or metal substrates, they are inhibited on insulating substrates, such as silicon dioxide (Si02). This selectivity may be exploited in the manufacture of microelectronic devices, resulting in the formation of horizontal contacts and vertical vias by a self-aligning process. However, reaction parameters must be rigorously controlled, and even then tungsten nuclei may form on neighboring oxide surfaces after a short incubation time. Such nuclei can easily cause a short circuit or other defect and thereby render the device inoperable. If this loss of selectivity could be controlled in the practical applications of W-CVD, thereby allowing the incorporation of this technique into production, the cost of manufacturing microchips could be lowered. This research was designed to investigate the loss of selectivity for W-CVD in an attempt to understand the processes which lead to its occurrence. The effects of passivating the oxide surface with methanol against the formation of tungsten nuclei were studied. It was found that the methanol dissociates at oxide surface defect sites and blocks such sites from becoming tungsten nucleation sites. The effect of reactant partial pressure ratio on selectivity was also studied. It was found that as the reactant partial pressures are varied there are significant changes in the …
Back to Top of Screen