You limited your search to:

  Partner: UNT Libraries
 Department: Department of Materials Science and Engineering
 Collection: UNT Theses and Dissertations
Evaluation of hydrogen trapping in HfO2 high-κ dielectric thin films.

Evaluation of hydrogen trapping in HfO2 high-κ dielectric thin films.

Access: Use of this item is restricted to the UNT Community.
Date: August 2006
Creator: Ukirde, Vaishali
Description: Hafnium based high-κ dielectrics are considered potential candidates to replace SiO2 or SiON as the gate dielectric in complementary metal oxide semiconductor (CMOS) devices. Hydrogen is one of the most significant elements in semiconductor technology because of its pervasiveness in various deposition and optimization processes of electronic structures. Therefore, it is important to understand the properties and behavior of hydrogen in semiconductors with the final aim of controlling and using hydrogen to improve electronic performance of electronic structures. Trap transformations under annealing treatments in hydrogen ambient normally involve passivation of traps at thermal SiO2/Si interfaces by hydrogen. High-κ dielectric films are believed to exhibit significantly higher charge trapping affinity than SiO2. In this thesis, study of hydrogen trapping in alternate gate dielectric candidates such as HfO2 during annealing in hydrogen ambient is presented. Rutherford backscattering spectroscopy (RBS), elastic recoil detection analysis (ERDA) and nuclear reaction analysis (NRA) were used to characterize these thin dielectric materials. It was demonstrated that hydrogen trapping in bulk HfO2 is significantly reduced for pre-oxidized HfO2 prior to forming gas anneals. This strong dependence on oxygen pre-processing is believed to be due to oxygen vacancies/deficiencies and hydrogen-carbon impurity complexes that originate from organic precursors used in ...
Contributing Partner: UNT Libraries
First Principle Calculations of the Structure and Electronic Properties of Pentacene Based Organic and ZnO Based Inorganic Semiconducting Materials

First Principle Calculations of the Structure and Electronic Properties of Pentacene Based Organic and ZnO Based Inorganic Semiconducting Materials

Date: May 2012
Creator: Li, Yun
Description: In this thesis, I utilize first principles density functional theory (DFT) based calculations to investigate the structure and electronic properties including charge transfer behaviors and work function of two types of materials: pentacene based organic semiconductors and ZnO transparent conducting oxides, with an aim to search for high mobility n-type organic semiconductors and fine tuning work functions of ZnO through surface modifications. Based on DFT calculations of numerous structure combinations, I proposed a pentacene and perfluoro-pentacene alternating hybrid structures as a new type of n-type semiconductor. Based on the DFT calculations and Marcus charge transfer theory analysis, the new structure has high charge mobility and can be a promising new n-type organic semiconductor material. DFT calculations have been used to systematically investigate the effect of surface organic absorbate and surface defects on the work function of ZnO. It was found that increasing surface coverage of organic groups and decreasing surface defects lead to decrease of work functions, in excellent agreement with experimental results. First principles based calculations thus can greatly contribute to the investigating and designing of new electronic materials.
Contributing Partner: UNT Libraries
First Principles Calculations of the Site Substitution Behavior in Gamma Prime Phase in Nickel Based Superalloys

First Principles Calculations of the Site Substitution Behavior in Gamma Prime Phase in Nickel Based Superalloys

Date: August 2012
Creator: Chaudhari, Mrunalkumar
Description: Nickel based superalloys have superior high temperature mechanical strength, corrosion and creep resistance in harsh environments and found applications in the hot sections as turbine blades and turbine discs in jet engines and gas generator turbines in the aerospace and energy industries. The efficiency of these turbine engines depends on the turbine inlet temperature, which is determined by the high temperature strength and behavior of these superalloys. The microstructure of nickel based superalloys usually contains coherently precipitated gamma prime (?) Ni3Al phase within the random solid solution of the gamma () matrix, with the ? phase being the strengthening phase of the superalloys. How the alloying elements partition into the and ? phases and especially in the site occupancy behaviors in the strengthening ? phases play a critical role in their high temperature mechanical behaviors. The goal of this dissertation is to study the site substitution behavior of the major alloying elements including Cr, Co and Ti through first principles based calculations. Site substitution energies have been calculated using the anti-site formation, the standard defect formation formalism, and the vacancy formation based formalism. Elements such as Cr and Ti were found to show strong preference for Al sublattice, whereas Co ...
Contributing Partner: UNT Libraries
Functionalization and characterization of porous low-κ dielectrics.

Functionalization and characterization of porous low-κ dielectrics.

Access: Use of this item is restricted to the UNT Community.
Date: May 2005
Creator: Orozco-Teran, Rosa Amelia
Description: The incorporation of fluorine into SiO2 has been shown to reduce the dielectric constant of the existing materials by reducing the electrical polarizability. However, the incorporation of fluorine has also been shown to decrease film stability. Therefore, new efforts have been made to find different ways to further decrease the relative dielectric constant value of the existing low-k materials. One way to reduce the dielectric constant is by decreasing its density. This reduces the amount of polarizable materials. A good approach is increasing porosity of the film. Recently, fluorinated silica xerogel films have been identified as potential candidates for applications such as interlayer dielectric materials in CMOS technology. In addition to their low dielectric constants, these films present properties such as low refractive indices, low thermal conductivities, and high surface areas. Another approach to lower k is incorporating lighter atoms such as hydrogen or carbon. Silsesquioxane based materials are among them. However, additional integration issues such as damage to these materials caused by plasma etch, plasma ash, and wet etch processes are yet to be overcome. This dissertation reports the effects of triethoxyfluorosilane-based (TEFS) xerogel films when reacted with silylation agents. TEFS films were employed because they form robust silica ...
Contributing Partner: UNT Libraries
Gamma Prime Precipitation Mechanisms and Solute Partitioning in Ni-base Alloys

Gamma Prime Precipitation Mechanisms and Solute Partitioning in Ni-base Alloys

Date: August 2014
Creator: Rojhirunsakool, Tanaporn
Description: Nickel-base superalloys have been emerged as materials for gas turbines used for jet propulsion and electricity generation. The strength of the superalloys depends mainly from an ordered precipitates of L12 structure, so called gamma prime (γ’) dispersed within the disorder γ matrix. The Ni-base alloys investigated in this dissertation comprise both model alloy systems based on Ni-Al-Cr and Ni-Al-Co as well as the commercial alloy Rene N5. Classical nucleation and growth mechanism dominates the γ’ precipitation process in slowed-cooled Ni-Al-Cr alloys. The effect of Al and Cr additions on γ’ precipitate size distribution as well as morphological and compositional development of γ’ precipitates were characterized by coupling transmission electron microscopy (TEM) and 3D atom probe (3DAP) techniques. Rapid quenching Ni-Al-Cr alloy experiences a non-classical precipitation mechanism. Structural evolution of the γ’ precipitates formed and subsequent isothermal annealing at 600 °C were investigated by coupling TEM and synchrotron-based high-energy x-ray diffraction (XRD). Compositional evolution of the non-classically formed γ’ precipitates was determined by 3DAP and Langer, Bar-on and Miller (LBM) method. Besides homogeneous nucleation, the mechanism of heterogeneous γ’ precipitation involving a discontinuous precipitation mechanism, as a function of temperature, was the primary focus of study in case of the Ni-Al-Co ...
Contributing Partner: UNT Libraries
Growth Mechanisms, and Mechanical and Thermal Properties of Junctions in 3D Carbon Nanotube-graphene Nano-architectures

Growth Mechanisms, and Mechanical and Thermal Properties of Junctions in 3D Carbon Nanotube-graphene Nano-architectures

Date: December 2014
Creator: Niu, Jianbing
Description: Junctions are the key component for 3D carbon nanotube (CNT)-graphene seamless hybrid nanostructures. Growth mechanism of junctions of vertical CNTs growing from graphene in the presence of iron catalysts was simulated via quantum mechanical molecular dynamics (QM/MD) methods. CNTs growth from graphene with iron catalysts is based on a ‘‘base-growth’’ mechanism, and the junctions were the mixture of C-C and Fe-C covalent bonds. Pure C-C bonded junctions could be obtained by moving the catalyst during CNT growth or etching and annealing after growth. The growth process of 3D CNT-graphene junctions on copper templates with nanoholes was simulated with molecular dynamic (MD) simulation. There are two mechanisms of junction formation: (i) CNT growth over the holes that are smaller than 3 nm, and (ii) CNT growth inside the holes that are larger than 3 nm. The growth process of multi-layer filleted CNT-graphene junctions on the Al2O3 template was also simulated with MD simulation. A simple analytical model is developed to explain that the fillet takes the particular angle (135°). MD calculations show that 135° filleted junction has the largest fracture strength and thermal conductivity at room temperature compared to junctions with 90°,120°, 150°, and 180° fillets. The tensile strengths of the ...
Contributing Partner: UNT Libraries
Growth, Structure and Tribological Properties of Atomic Layer Deposited Lubricious Oxide Nanolaminates

Growth, Structure and Tribological Properties of Atomic Layer Deposited Lubricious Oxide Nanolaminates

Date: December 2010
Creator: Mensah, Benedict Anyamesem
Description: Friction and wear mitigation is typically accomplished by introducing a shear accommodating layer (e.g., a thin film of liquid) between surfaces in sliding and/or rolling contacts. When the operating conditions are beyond the liquid realm, attention turns to solid coatings. Solid lubricants have been widely used in governmental and industrial applications for mitigation of wear and friction (tribological properties). Conventional examples of solid lubricants are MoS2, WS2, h-BN, and graphite; however, these and some others mostly perform best only for a limited range of operating conditions, e.g. ambient air versus dry nitrogen and room temperature versus high temperatures. Conversely, lubricious oxides have been studied lately as good potential candidates for solid lubricants because they are thermodynamically stable and environmentally robust. Oxide surfaces are generally inert and typically do not form strong adhesive bonds like metals/alloys in tribological contacts. Typical of these oxides is ZnO. The interest in ZnO is due to its potential for utility in a variety of applications. To this end, nanolaminates of ZnO, Al2O3, ZrO2 thin films have been deposited at varying sequences and thicknesses on silicon substrates and high temperature (M50) bearing steels by atomic layer deposition (ALD). The top lubricious, nanocrystalline ZnO layer was structurally-engineered ...
Contributing Partner: UNT Libraries
Hydrophobic, fluorinated silica xerogel for low-k applications.

Hydrophobic, fluorinated silica xerogel for low-k applications.

Date: May 2004
Creator: Zhang, Zhengping
Description: A new hydrophobic hybrid silica film was synthesized by introducing one silicon precursor (as modifiers) into another precursor (network former). Hybrid films have improved properties. Hydrolysis and condensation of dimethyldiethoxysilane (DMDES) (solvent (EtOH) to DMDES molar ratio R = 4, water to DMDES molar ratio r = 4, 0.01 N HCl catalyst) was analyzed using high-resolution liquid 29Si NMR. It was found that after several hours, DMDES hydrolyzed and condensed into linear and cyclic species. Films from triethoxyfluorosilane (TEFS) have been shown to be promising interlayer dielectric materials for future integrated circuit applications due to their low dielectric constant and high mechanical properties (i.e., Young's modulus (E) and hardness (H)). Co-condensing with TEFS, linear structures from DMDES hydrolysis and condensation reactions rendered hybrid films hydrophobic, and cyclic structures induced the formation of pores. Hydrophobicity characterized by contact angle, thermal stability by thermogravimetric analysis (TGA), Fourier transform Infrared spectroscopy (FTIR), contact angle, and dynamic secondary ion mass spectroscopy (DSIMS), dielectric constant determined by impedance measurement, and mechanical properties (E and H) determined by nanoindentation of TEFS and TEFS + DMDES films were compared to study the effect of DMDES on the TEFS structure. Hybrid films were more hydrophobic and thermally stable. ...
Contributing Partner: UNT Libraries
Indentation induced deformation in metallic materials.

Indentation induced deformation in metallic materials.

Date: December 2005
Creator: Vadlakonda, Suman
Description: Nanoindentation has brought in many features of research over the past decade. This novel technique is capable of producing insights into the small ranges of deformation. This special point has brought a lot of focus in understanding the deformation behavior under the indenter. Nickel, iron, tungsten and copper-niobium alloy system were considered for a surface deformation study. All the samples exhibited a spectrum of residual deformation. The change in behavior with indentation and the materials responses to deformation at low and high loads is addressed in this study. A study on indenter geometry, which has a huge influence on the contact area and subsequently the hardness and modulus value, has been attempted. Deformation mechanisms that govern the plastic flow in materials at low loads of indentation and their sensitivity to the rate of strain imparted has been studied. A transition to elastic, plastic kind of a tendency to an elasto-plastic tendency was seen with an increase in the strain rate. All samples exhibited the same kind of behavior and a special focus is drawn in comparing the FCC nickel with BCC tungsten and iron where the persistence of the elastic, plastic response was addressed. However there is no absolute reason ...
Contributing Partner: UNT Libraries
The Influence of Ohmic Metals and Oxide Deposition on the Structure and Electrical Properties of Multilayer Epitaxial Graphene on Silicon Carbide Substrates

The Influence of Ohmic Metals and Oxide Deposition on the Structure and Electrical Properties of Multilayer Epitaxial Graphene on Silicon Carbide Substrates

Date: May 2011
Creator: Maneshian, Mohammad Hassan
Description: Graphene has attracted significant research attention for next generation of semiconductor devices due to its high electron mobility and compatibility with planar semiconductor processing. In this dissertation, the influences of Ohmic metals and high dielectric (high-k) constant aluminum oxide (Al2O3) deposition on the structural and electrical properties of multi-layer epitaxial graphene (MLG) grown by graphitization of silicon carbide (SiC) substrates have been investigated. Uniform MLG was successfully grown by sublimation of silicon from epitaxy-ready, Si and C terminated, 6H-SiC wafers in high-vacuum and argon atmosphere. The graphene formation was accompanied by a significant enhancement of Ohmic behavior, and, was found to be sensitive to the temperature ramp-up rate and annealing time. High-resolution transmission electron microscopy (HRTEM) showed that the interface between the metal and SiC remained sharp and free of macroscopic defects even after 30 min, 1430 °C anneals. The impact of high dielectric constant Al2O3 and its deposition by radio frequency (RF) magnetron sputtering on the structural and electrical properties of MLG is discussed. HRTEM analysis confirms that the Al2O3/MLG interface is relatively sharp and that thickness approximation of the MLG using angle resolved X-ray photoelectron spectroscopy (ARXPS) as well as variable-angle spectroscopic ellipsometry (VASE) is accurate. The totality ...
Contributing Partner: UNT Libraries