You limited your search to:

  Partner: UNT Libraries
 Department: Department of Materials Science and Engineering
 Decade: 2000-2009
 Collection: UNT Theses and Dissertations
Measurement of Lattice Strain and Relaxation Effects in Strained Silicon Using X-ray Diffraction and Convergent Beam Electron Diffraction

Measurement of Lattice Strain and Relaxation Effects in Strained Silicon Using X-ray Diffraction and Convergent Beam Electron Diffraction

Date: August 2007
Creator: Diercks, David Robert
Description: The semiconductor industry has decreased silicon-based device feature sizes dramatically over the last two decades for improved performance. However, current technology has approached the limit of achievable enhancement via this method. Therefore, other techniques, including introducing stress into the silicon structure, are being used to further advance device performance. While these methods produce successful results, there is not a proven reliable method for stress and strain measurements on the nanometer scale characteristic of these devices. The ability to correlate local strain values with processing parameters and device performance would allow for more rapid improvements and better process control. In this research, x-ray diffraction and convergent beam electron diffraction have been utilized to quantify the strain behavior of simple and complex strained silicon-based systems. While the stress relaxation caused by thinning of the strained structures to electron transparency complicates these measurements, it has been quantified and shows reasonable agreement with expected values. The relaxation values have been incorporated into the strain determination from relative shifts in the higher order Laue zone lines visible in convergent beam electron diffraction patterns. The local strain values determined using three incident electron beam directions with different degrees of tilt relative to the device structure have ...
Contributing Partner: UNT Libraries
Micro and nano composites composed of a polymer matrix and a metal disperse phase.

Micro and nano composites composed of a polymer matrix and a metal disperse phase.

Date: December 2007
Creator: Olea Mejia, Oscar Fernando
Description: Low density polyethylene (LDPE) and Hytrel (a thermoplastic elastomer) were used as polymeric matrices in polymer + metal composites. The concentration of micrometric (Al, Ag and Ni) as well as nanometric particles (Al and Ag) was varied from 0 to 10 %. Composites were prepared by blending followed by injection molding. The resulting samples were analyzed by scanning electron microscopy (SEM) and focused ion beam (FIB) in order to determine their microstructure. Certain mechanical properties of the composites were also determined. Static and dynamic friction was measured. The scratch resistance of the specimens was determined. A study of the wear mechanisms in the samples was performed. The Al micro- and nanoparticles as well as Ni microparticles are well dispersed throughout the material while Ag micro and nanoparticles tend to form agglomerates. Generally the presence of microcomposites affects negatively the mechanical properties. For the nanoparticles, composites with a higher elastic modulus than that of the neat materials are achievable. For both micro- and nanocomposites it is feasible to lower the friction values with respective to the neat polymers. The addition of metal particles to polymers also improves the scratch resistance of the composites, particularly so for microcomposites. The inclusion of Ag ...
Contributing Partner: UNT Libraries
Modifications of epoxy resins for improved mechanical and tribological performances and their effects on curing kinetics.

Modifications of epoxy resins for improved mechanical and tribological performances and their effects on curing kinetics.

Date: May 2008
Creator: Chonkaew, Wunpen
Description: A commercial epoxy, diglycidyl ether of bisphenol-A, was modified by two different routes. One was the addition of silica to produce epoxy composites. Three different silane coupling agents, glycidyloxypropyl trimethoxy silane (GPS), -methacryloxypropyl trimethoxy silane (MAMS) and 3-mercaptopropyltriethoxy silane (MPS), were used as silica-surface modifiers. The effects of silica content, together with the effects of chemical surface treatment of silica, were studied. The results indicate that epoxy composites with silica exhibit mechanical and tribological properties as well as curing kinetics different than the pure epoxy. The optimum silica content for improved mechanical and tribological properties (low friction coefficient and wear rate) was different for each type of silane coupling agent. An unequivocal correlation between good mechanical and improved tribological properties was not found. Activation energy of overall reactions was affected by the addition of silica modified with MAMS and MPS, but not with GPS. The second route was modification by fluorination. A new fluoro-epoxy oligomer was synthesized and incorporated into a commercial epoxy by a conventional blending method. The oligomer functioned as a catalyst in the curing of epoxy and polyamine. Thermal stability of the blends decreased slightly at a high oligomer content. Higher wear resistance, lower friction coefficient and ...
Contributing Partner: UNT Libraries
Modified epoxy coatings on mild steel: A study of tribology and surface energy.

Modified epoxy coatings on mild steel: A study of tribology and surface energy.

Date: August 2009
Creator: Dutta, Madhuri
Description: A commercial epoxy was modified by adding fluorinated poly (aryl ether ketone) and in turn metal micro powders (Ni, Al, Zn, and Ag) and coated on mild steel. Two curing agents were used; triethylenetetramine (curing temperatures: 30 oC and 70 oC) and hexamethylenediamine (curing temperature: 80 oC). Variation in tribological properties (dynamic friction and wear) and surface energies with varying metal powders and curing agents was evaluated. When cured at 30 oC, friction and wear decreased significantly due to phase separation reaction being favored but increased when cured at 70 oC and 80 oC due to cross linking reaction being favored. There was a significant decrease in surface energies with the addition of modifiers.
Contributing Partner: UNT Libraries
Morphological properties of poly (ethylene terephthalate) (PET) nanocomposites in relation to fracture toughness.

Morphological properties of poly (ethylene terephthalate) (PET) nanocomposites in relation to fracture toughness.

Date: August 2005
Creator: Pendse, Siddhi
Description: The effect of incorporation of montmorillonite layered silicate (MLS) on poly (ethylene terephthalate) (PET) matrix was investigated. MLS was added in varying concentration of 1 to 5 weight percent in the PET matrix. DSC and polarized optical microscopy were used to determine the crystallization effects of MLS addition. Non isothermal crystallization kinetics showed that the melting temperature and crystallization temperature decrease as the MLS percent increases. This delayed crystallization along with the irregular spherulitic shape indicates hindered crystallization in the presence of MLS platelets. The influence of this morphology was related with the fracture toughness of PET nanocomposites using essential work of fracture coupled with the infra red (IR) thermography. Both the essential as well as non essential work of fracture decreased on addition of MLS with nanocomposite showing reduced toughness.
Contributing Partner: UNT Libraries
Orientation, Microstructure and Pile-Up Effects on Nanoindentation Measurements of FCC and BCC Metals

Orientation, Microstructure and Pile-Up Effects on Nanoindentation Measurements of FCC and BCC Metals

Date: May 2008
Creator: Srivastava, Ashish Kumar
Description: This study deals with crystal orientation effect along with the effects of microstructure on the pile-ups which affect the nanoindentation measurements. Two metal classes, face centered cubic (FCC) and body centered cubic (BCC, are dealt with in the present study. The objective of this study was to find out the degree of inaccuracy induced in nanoindentation measurements by the inherent pile-ups and sink-ins. Also, it was the intention to find out how the formation of pile-ups is dependant upon the crystal structure and orientation of the plane of indentation. Nanoindentation, Nanovision, scanning electron microscopy, electron dispersive spectroscopy and electron backscattered diffraction techniques were used to determine the sample composition and crystal orientation. Surface topographical features like indentation pile-ups and sink-ins were measured and the effect of crystal orientation on them was studied. The results show that pile-up formation is not a random phenomenon, but is quite characteristic of the material. It depends on the type of stress imposed by a specific indenter, the depth of penetration, the microstructure and orientation of the plane of indentation. Pile-ups are formed along specific directions on a plane and this formation as well as the pile-up height and the contact radii with the indenter ...
Contributing Partner: UNT Libraries
Polyethylene-layered double hydroxide and montmorillonite nanocomposites: Thermal, mechanical and flame retardance properties.

Polyethylene-layered double hydroxide and montmorillonite nanocomposites: Thermal, mechanical and flame retardance properties.

Date: May 2008
Creator: Kosuri, Divya
Description: The effect of incorporation two clays; layered double hydroxides (LDH) and montmorillonite layered silicates (MLS) in linear low density polyethylene (PE) matrix was investigated. MLS and LDH were added of 5, 15, 30 and 60 weight percent in the PE and compounded using a Brabender. Ground pellets were subsequently compression molded. Dispersion of the clays was analyzed using optical microscopy, SEM and XRD. Both the layered clays were immiscible with the PE matrix and agglomerates formed with increased clay concentration. The thermal properties were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Both clays served as nucleation enhancers increasing recrystallization temperatures in the composites. Flame retarding properties were determined by using the flammability HVUL-94 system. LDH indicated better flame retarding properties than MLS for PE. The char structure was analyzed by environmental scanning electron microscopy. Mechanical properties were studied by tensile testing and Vickers microhardness testing apparatus.
Contributing Partner: UNT Libraries
Polymer Liquid Crystal (PLC) and Polypropylene Interlayers in Polypropylene and Glass Fiber Composites: Mechanical Properties

Polymer Liquid Crystal (PLC) and Polypropylene Interlayers in Polypropylene and Glass Fiber Composites: Mechanical Properties

Date: December 2000
Creator: Maswood, Syed
Description: In recent developments of composite materials, scientists and engineers have come up with fibers as well as matrices for composites and techniques of blending high cost components with low cost materials. Thus, one creates cost effective composite materials that are as efficient as space age components. One of the major breakthroughs in this area is the innovation of molecular composites, specifically polymeric liquid crystals (PLCs). These materials have excellent mechanical properties such as tensile impact and bending strength. They have excellent chemical resistance, low thermal expansivity, and low flammability. Their low viscosity leads to good processability One major setback in using space age composite technology in commercial applications is the price. Due to the complexity of processing, the cost of space composite materials is skyrocketing. To take the same concept of space age composite materials to create a more economical substitute has become a serious concern among scientists and engineers around the world. The two issues that will be resolved in this thesis are: (1) the potential impact of using PLCs (molecular reinforcement) can have on macro reinforced (heterogeneous composite, HC) long fiber systems; and (2) how strategic placement of the reinforcing layers can affect the macromechanical properties of the ...
Contributing Partner: UNT Libraries
Processing, Structure, and Tribological Property Interrelationships in Sputtered Nanocrystalline ZnO Coatings

Processing, Structure, and Tribological Property Interrelationships in Sputtered Nanocrystalline ZnO Coatings

Date: August 2009
Creator: Tu, Wei-Lun
Description: Solid lubricant coatings with controlled microstructures are good candidates in providing lubricity in moving mechanical assembly applications, such as orthopedics and bearing steels. Nanocrystalline ZnO coatings with a layered wurtzite crystal structure have the potential to function as a lubricious material by its defective structure which is controlled by sputter deposition. The interrelationships between sputtered ZnO, its nanocrystalline structure and its lubricity will be discussed in this thesis. The nanocrystalline ZnO coatings were deposited on silicon substrates and Ti alloys by RF magnetron sputtering with different substrate adhesion layers, direct current biases, and temperatures. X-ray diffraction identified that the ZnO (0002) preferred orientation was necessary to achieve low sliding friction and wear along with substrate biasing. In addition, other analyses such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) were utilized to study the solid lubrication mechanisms responsible for low friction and wear.
Contributing Partner: UNT Libraries
Processing, structure property relationships in polymer layer double hydroxide multifunctional nanocomposites

Processing, structure property relationships in polymer layer double hydroxide multifunctional nanocomposites

Date: August 2009
Creator: Ogbomo, Sunny Minister
Description: Dan Beaty (1937-2002) was a prolific composer, pianist, researcher, educator, and writer. His large compositional output included chamber works, choral works, songs, orchestral pieces, electronic music, and keyboard works. Beaty was well versed in traditional Western music as well as the more avant-garde and perplexing idioms of the twentieth century. Beaty's compositions reflect the many fascinating, if not always popular, musical trends of his time. His music encompasses styles from serial to jazz, shows compositional influences from Arnold Schoenberg to Indonesian music, and demonstrates thought-provoking and highly intellectual craftsmanship. This document explores several of Beaty's songs through a discussion of the composer's life and compositional process. Songs included in this document are Three Weeks Songs, October, November, A Sappho Lyric, Love Song, That Night When Joy Began, and War Lyrics. This document was written to accompany the author's DMA Lecture-Recital at the University of North Texas. Unfortunately, Beaty's vocal music was never published and is mostly unknown. One goal of the project was to initiate interest in Beaty's songs. Through this document, Lecture-Recital, and additional performances, considerable strides have been made to bring Beaty's songs to new audiences throughout the United States. In addition, the author has received permission from ...
Contributing Partner: UNT Libraries