Search Results

open access

Engineering the Uniform Lying Helical Structure in Chiral Nematic Liquid Crystal Phase: From Morphology Transition to Dimension Control

Description: Chiral nematic liquid crystals or cholesteric liquid crystals (CLC) can be obtained by adding a chiral dopant into a nematic liquid crystal. Liquid crystal molecules spontaneously rotate along a long axis to form helical structures in CLC system. Both pitch size and orientation of the helical structure is determined by the boundary conditions and can be further tuned by external stimuli. Particularly, the uniform lying helical structure of CLC has attracted intensive attention due to its beam s… more
Date: May 2021
Creator: Jia, Zhixuan

High Strain Rate Deformation Behavior of Single-Phase and Multi-Phase High Entropy Alloys

Description: Fundamental understanding of high strain rate deformation behavior of materials is critical in designing new alloys for wide-ranging applications including military, automobile, spacecraft, and industrial applications. High entropy alloys, consisting of multiple elements in (near) equimolar proportions, represent a new paradigm in structural alloy design providing ample opportunity for achieving excellent performance in high strain rate applications by proper selection of constituent elements a… more
Date: May 2021
Creator: Muskeri, Saideep

Investigation of Porous Ceramic Structure by Freeze-Casting

Description: The design and fabrication of porous ceramic materials with anisotropic properties has, in recent years, gained popularity due to their potential application in various areas that include medical, energy, defense, space, and aerospace. Freeze-casting is an effective, low-cost, and safe method as a wet shaping technique to create these structures. To control the morphology of these materials, many critical factors were found to play an important role. In this dissertation, the processing paramet… more
Date: May 2021
Creator: Bakkar, Said Adnan

Optical Emission Spectroscopy Monitoring Method for Additively Manufactured Iron-Nickel and Other Complex Alloy Samples

Description: The method of optical emission spectroscopy has been used with Fe-Ni and other complex alloys to investigate in-situ compositional control for additive manufacturing. Although additive manufacturing of metallic alloys is an emerging technology, compositional control will be a challenge that needs to be addressed for a multitude of industries going forward for next-gen applications. This current scope of work includes analysis of ionized species generated from laser and metal powder interaction … more
Date: May 2021
Creator: Flannery, David A. (David Andrew)

Origin of Unusually Large Hall-Petch Strengthening Coefficients in High Entropy Alloys

Description: High entropy alloys (HEAs), also referred to as complex concentrated alloys (CCAs), are a relatively new class of alloys that have gained significant attention since 2010 due to their unique balance of properties that include high strength, ductility and excellent corrosion resistance. HEAs are usually based on five or more elements alloyed in near equimolar concentrations, and exhibit simple microstructures by the formation of solid solution phases instead of complex compounds. HEAs have great… more
Date: May 2021
Creator: Jagetia, Abhinav

Switchable and Memorable Adhesion of Gold-Coated Microspheres with Electrochemical Modulation

Description: Switchable adhesives using stimuli-responsive systems have many applications, including transfer printing, climbing robots, and gripping in pick and place processes. Among these adhesives, electroadhesive surface can spontaneously adjust their adhesion in response to an external electric field. However, electroadhesives usually need high voltage (e.g. kV) and the adhesion disappears upon turning off the signal. These limitations make them complicated and costly. In this research, we demonstrate… more
Date: May 2021
Creator: Wang, Jie (Materials scientist)
open access

Processing, Pre-Aging, and Aging of NiTi-Hf (15-20 at.%) High Temperature Shape Memory Alloy from Laboratory to Industrial Scale

Description: The overarching goal of this research was to generate a menu of shape memory alloys (SMAs) actuator materials capable of meeting the demands of aerospace applications. Material requirements were recognized to meet the demand for high temperature SMAs with actuating temperatures above 85 °C and provide material options capable of performing over 100K actuation cycles. The first study is a preliminary characterization for the down selection of Ni-rich NiTiHf15 compositions chosen for a more in-de… more
Date: December 2020
Creator: Gantz, Faith

Tribo-Corrosion of High Entropy Alloys

Description: In this dissertation, tribo-corrosion behavior of several single-phase and multi-phase high entropy alloys were investigated. Tribo-corrosion of body centered cubic MoNbTaTiZr high entropy alloy in simulated physiological environment showed very low friction coefficient (~ 0.04), low wear rate (~ 10-8 mm3/Nm), body-temperature assisted passivation, and excellent biocompatibility with respect to stem cells and bone forming osteoblast cells. Tribo-corrosion resistance was evaluated for additively… more
Date: December 2020
Creator: Shittu, Jibril

High Temperature Sliding Wear Behavior and Mechanisms of Cold-Sprayed Ti and Ti-TiC Composites

Description: Ti and Ti-based alloys are used in many aerospace and automotive components due to their high strength-to-weight ratio and corrosion resistance. However, room and elevated temperature wear resistance remain an issue, thus requiring some form of secondary hard phase, e.g., refractory carbides and oxides, as well as solid lubrication to mitigate wear. In this study, Ti-TiC (14, 24 and 35 vol% TiC) composite coatings were deposited on mild steel substrates using cold spray with comparisons made to… more
Date: August 2020
Creator: Koricherla, Manindra Varma
open access

In-situ Analysis of the Evolution of Surfaces and Interfaces under Applied Coupled Stresses

Description: To study the effect of the substrate support on the nanoscale contact, three different regimes, i.e., graphene on rigid (ultra-crystalline diamond) and on elastic (Polydimethylsiloxane) supports and free-standing graphene, were considered. The contribution of the graphene support to the mechanical and electrical characteristics of the graphene/metal contact was studied using the conductive atomic force microscopy (AFM) technique.The results revealed that the electrical conductivity of the graph… more
Date: August 2020
Creator: Lee, Ji Hyung

Synthesis, Phase Development, and the Mechanism for Negative Thermal Expansion in Aluminum Tungstate

Description: An in-depth study of Al2W3O12 negative thermal expansion (NTE) ceramic was performed, focused on synthesis, phase mappings, and the underlying mechanisms shown to be responsible for NTE. Review of the literature has shown inconsistencies in reported values of the dilatometry measured coefficients of thermal expansion, and the temperature for the known monoclinic to orthorhombic phase transition. Two synthesis techniques are introduced: an ionic-liquid non-hydrolytic sol-gel synthesis route; an… more
Date: May 2020
Creator: Rose, Kyle
open access

Thermo-Mechanical Processing and Advanced Charecterization of NiTi and NiTiHf Shape Memory Alloys

Description: Shape memory alloys (SMAs) represent a revolutionary class of active materials that can spontaneously generate strain based on an environmental input, such as temperature or stress. SMAs can provide potential solutions to many of today's engineering problems due to their compact form, high energy densities, and multifunctional capabilities. While many applications in the biomedical, aerospace, automotive, and defense industries have already been investigated and realized for nickel-titanium (Ni… more
Date: May 2020
Creator: Ley, Nathan A

Nano-Manufacturing of Catalytic Amorphous Alloys

Description: In this dissertation, nano-manufacturing of amorphous alloys for electro-catalytic applications is reported and the role of chemistry and active surface area on catalytic behavior is discussed. The catalytic activity of recently developed platinum and palladium-based metallic glasses was studied using cyclic voltammetry and localized electrochemical techniques. The synergistic effect between platinum and palladium was shown for amorphous alloys containing both these elements. The mechanism for … more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: December 2019
Creator: Hasannaeimi, Vahid

Carbon Nanotubes and Molybdenum Disulfide Protected Electrodes for High Performance Lithium-Sulfur Battery Applications

Description: Lithium-sulfur (Li-S) batteries are faced with practical drawbacks of poor cycle life and low charge efficiency which hinder their advancements. Those drawbacks are primarily caused by the intrinsic issues of the cathodes (sulfur) and the anodes (Li metal). In attempt to resolve the issues found on the cathodes, this work discusses the method to prepare a binder-free three-dimensional carbon nanotubes-sulfur (3D CNTs-S) composite cathode by a facile and a scalable approach. Here, the 3D structu… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: August 2019
Creator: Cha, Eunho

Charpy Impact Testing of Twinning Induced Plasticity and Transformation Induced Plasticity High Entropy Alloys

Description: High entropy alloys (HEAs) are a new class of solid solution alloys that contain multiple principal elements and possess excellent mechanical properties, from corrosion resistance to fatigue and wear resistance. Even more recently, twinning induced plasticity (TWIP) and transformation induced plasticity (TRIP) non-equiatomic high entropy alloys have been engineered, promising increased strength and ductility as compared to their equiatomic counterparts. However, impact and fracture resistance o… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: August 2019
Creator: Zellner, Samantha R
open access

Design of a Polymeric Coating for Protecting Thermoelectric Materials from Sublimation and Oxidation

Description: Thermoelectric (TE) devices can undergo degradation from reactions in corrosive environments and at higher operating temperatures by sublimation and oxidation. To prevent the degradation, we have applied two high temperature polymers (HTPs) as coatings for TE materials. Sintering temperatures were from 250°C to 400°C. We explain why dip coating is better technique in our study and had two potential HTPs for tests. By applying TGA (thermogravimetric analysis), we were able to figure out which HT… more
Date: August 2019
Creator: Chen, I Kang

Dynamic Deformation and Shear Localization in Friction-Stir Processed Al0.3CoCrFeNi and Fe50Mn30Co10Cr10 High-Entropy Alloys

Description: High entropy alloys (HEAs) are a relatively new class of solid solution alloys that contain multiple principal elements to take advantage of their high configurational entropy, sluggish diffusion, lattice distortion, and the cocktail effect. In recent development, work hardening mechanisms known as twinning induced plasticity (TWIP) and transformation induced plasticity (TRIP) have been found active in Al0.3CoCrFeNi (molar fraction) and Fe50Mn30Co10Cr10 (at %) HEA compositions. Friction-stir pr… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: August 2019
Creator: Macdonald, Neil

Extrinsic Doping of Few Layered Tungsten Disulfide Films by Pulsed Laser Deposition

Description: This dissertation tested the hypothesis that pulsed laser deposition (PLD) could be used to create targeted dopant profiles in few layered WS2 films based on congruent evaporation of the target. At the growth temperatures used, 3D Volmer-Weber growth was observed. Increased energy transfer from the PLD plume to the growing films degraded stoichiometry (desorption of sulfur) and mobility. Sulfur vacancies act as donors and produce intrinsic n-type conductivity. Post deposition annealing signific… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: August 2019
Creator: Rathod, Urmilaben Pradipsinh P

Linking Enhanced Fatigue Life to Design by Modifying the Microstructure

Description: Structural material fatigue is a leading cause of failure and has motivated fatigue-resistant design to eliminate risks to human lives. Intrinsic microstructural features alter fatigue deformation mechanisms so profoundly that, essentially, fatigue properties of structural materials become deviant. With this in mind, we initiated this project to investigate the microstructural effect on fatigue behavior of potential structural high entropy alloys. With a better understanding of the effect of mi… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: August 2019
Creator: Liu, Kaimiao

Phase Transformation and Elastic Constants in Binary Titanium Alloys: An Atomistic Study

Description: The current understanding of the mechanical properties and deformation behavior of some individual phases in titanium alloys is limited due to the fine scale at which these phases precipitate within the β-phase matrix. The α and ω phases represent the most widely observed phases in titanium alloys depending on the alloy composition and also the heat treatment procedure adopted during processing. The possibility of precipitating ω-phase depends on the content of the β-stabilizers within the syst… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: August 2019
Creator: Salloom, Riyadh Farooq

Phase Transformations in Refractory High Entropy Alloys

Description: High entropy alloys (HEAs) based on refractory elements have shown a great potential for high temperature structural applications. In particular, the ones containing Al, exhibits a microstructure similar to the γ-γ' in Ni-based superalloys. While these alloys exhibit impressive strengths at room temperature (RT) and at elevated temperatures, the continuous B2 matrix in these alloys is likely to be responsible for their brittle behavior at RT. Phase stability of five such alloys are studied by t… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: August 2019
Creator: Soni, Vishal

Processing-Structure-Property Relationships of Reactive Spark Plasma Sintered Boron Carbide-Titanium Diboride Composites

Description: Sintering parameter effects on the microstructure of boron carbide and boron carbide/titanium diboride composites are investigated. The resulting microstructure and composition are characterized by scanning electron microscopy (SEM), x-ray microscopy (XRM) and x-ray diffraction (XRD). Starting powder size distribution effects on microstructure are present and effect the mechanical properties. Reactive spark plasma sintering introduces boron nitride (BN) intergranular films (IGF's) and their eff… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: August 2019
Creator: Lide, Hunter

Understanding the Micromechanism of Cyclic Loading Behavior of Ultrafine Grained Alloys

Description: In the current study, we have investigated the cyclic loading behavior of conventional as well as novel alloy system exhibiting fine and ultrafine-grained structure. While in case of conventional alloy systems (here aluminum alloy AA5024), the effect of three different grain sizes was investigated. Improvement in fatigue properties was observed with decreasing grain size. The unique microstructure produced via Friction stir processing was responsible for the improved fatigue response. Additiona… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: August 2019
Creator: Shukla, Shivakant

Bio-Inspired Material Surfaces with Self-cleaning, Micromanipulation and Water Collection

Description: Geckos are famous for the skill of switchable adhesion that they use to stick on various surface while keep their fingers super clean. In the dissertation, a unique mechanism was discovered to explain gecko self-cleaning phenomena. Using atomic force microscopy (AFM), we managed to compare the microparticle-substrate adhesion and the microparticle-seta adhesion with a single seta bonded to the AFM cantilever. A dynamic effect was approved that high pulling-off speed could increase the micropart… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: May 2019
Creator: Wan, Yiyang
Back to Top of Screen