You limited your search to:

  Partner: UNT Libraries
 Department: Department of Engineering Technology
 Decade: 2000-2009
Characterization of boron nitride thin films on silicon (100) wafer.
Cubic boron nitride (cBN) thin films offer attractive mechanical and electrical properties. The synthesis of cBN films have been deposited using both physical and chemical vapor deposition methods, which generate internal residual, stresses that result in delamination of the film from substrates. Boron nitride films were deposited using electron beam evaporation without bias voltage and nitrogen bombardment (to reduce stresses) were characterize using FTIR, XRD, SEM, EDS, TEM, and AFM techniques. In addition, a pin-on-disk tribological test was used to measure coefficient of friction. Results indicated that samples deposited at 400°C contained higher cubic phase of BN compared to those films deposited at room temperature. A BN film containing cubic phase deposited at 400°C for 2 hours showed 0.1 friction coefficient. digital.library.unt.edu/ark:/67531/metadc3942/
Characterization of iron oxide deposits formed at Comanche Peak Steam Electric Station (CPSES)
Access: Use of this item is restricted to the UNT Community.
The presence of deposits leading to corrosion of the steam generator (SG) systems is a major contributor to operation and maintenance cost of pressurized water reactor (PWR) plants. Formation and transport of corrosion products formed due to the presence of impurities, metallic oxides and cations in the secondary side of the SG units result in formation of deposits. This research deals with the characterization of deposit samples collected from the two SG units (unit 1 and unit 2) at Comanche Peak Steam Electric Station (CPSES). X-ray diffraction (XRD), Fourier transform infrared spectrophotometry (FTIR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) techniques have been used for studying the compositional and structural properties of iron oxides formed in the secondary side of unit 1 and unit 2. Magnetite (Fe3O4) was found to be predominant in samples from unit 1 and maghemite (g-Fe2O3) was found to be the dominant phase in case of unit 2. An attempt has been made to customize FTIR technique for analyzing different iron oxide phases present in the deposits of PWR-SG systems. digital.library.unt.edu/ark:/67531/metadc5521/
Cold-Formed Steel Bolted Connections without Washers on Oversized and Slotted Holes
The use of the cold-formed steel sheet bolted connections without washers is so significant; however, the North American Specifications for the Design of Cold Formed Steel Structural Members, NASPEC, doesn't provide provisions for such connections. The bearing failure of sheet and the shear failure of sheet were considered in this study. For the sheet shear strength, it was found that the NASPEC (2007) design provisions can be used for oversized holes in both single and double shear configurations and for the double shear connections on short slotted holes. For the sheet bearing strength, a new design method was proposed to be used for low and high ductile steel sheets. The method was compared with the NASPEC and the University of Waterloo approach. Washers were still required for single shear connections on short slotted holes. Besides, connections using ASTM A325 bolts yielded higher bearing strength than connections using ASTM A307 bolts. digital.library.unt.edu/ark:/67531/metadc10983/
Computer virus spread containment using feedback control.
In this research, a security architecture based on the feedback control theory has been proposed. The first loop has been designed, developed and tested. The architecture proposes a feedback model with many controllers located at different stages of network. The controller at each stage gives feedback to the one at higher level and a decision about network security is taken. The first loop implemented in this thesis detects one important anomaly of virus attack, rate of outgoing connection. Though there are other anomalies of a virus attack, rate of outgoing connection is an important one to contain the spread. Based on the feedback model, this symptom is fed back and a state model using queuing theory is developed to delay the connections and slow down the rate of outgoing connections. Upon implementation of this model, whenever an infected machine tries to make connections at a speed not considered safe, the controller kicks in and sends those connections to a delay queue. Because of delaying connections, rate of outgoing connections decrease. Also because of delaying, many connections timeout and get dropped, reducing the spread. PID controller is implemented to decide the number of connections going to safe or suspected queue. Multiple controllers can be implemented to control the parameters like delay and timeout. Control theory analysis is performed on the system to test for stability, controllability, observability. Sensitivity analysis is done to find out the sensitivity of the controller to the delay parameter. The first loop implemented gives feedback to the architecture proposed about symptoms of an attack at the node level. A controller needs to be developed to receive information from different controllers and decision about quarantining needs to be made. This research gives the basic information needed for the controller about what is going on at individual nodes of the network. This information can also be used to increase sensitivity of other loops to increase the effectiveness of feedback architecture. digital.library.unt.edu/ark:/67531/metadc4675/
Cost savings realized through proper sizing of an excessive instrument air system.
The purpose of this research was to determine if installing a smaller air compressor could reduce the electrical usage of a large semiconductor manufacturing plant. A 200 horsepower Atlas Copco compressor was installed with the existing 500 horsepower Ingersoll-Rand compressors. Testing was conducted during the regular manufacturing process at MEMC Southwest in Sherman, Texas. Analysis of the data found that installing the new compressor could reduce electrical consumption. The study also found there are specific operational setpoints that allow the compressor to operate more efficiently. digital.library.unt.edu/ark:/67531/metadc4428/
Design and validation of an automated multiunit composting system.
This thesis covers the design of an automated multiunit composting system (AMUCS) that was constructed to meet the experimental apparatus requirements of the ASTM D5338 standard. The design of the AMUCS is discussed in full detail and validated with two experiments. The first experiment was used to validate the operation of the AMUCS with a 15 day experiment. During this experiment visual observations were made to visually observe degradation. Thermal properties and stability tests were performed to quantify the effects of degradation on the polymer samples, and the carbon metabolized from the degradation of samples was measured. The second experiment used the AMUCS to determine the effect of synthetic clay nanofiller on the aerobic biodegradability behavior of poly (3-hydroxybutyrate-co-3-hydroxyvalerate). digital.library.unt.edu/ark:/67531/metadc12184/
Design of Power Amplifier Test Signals with a User-Defined Multisine
Access: Use of this item is restricted to the UNT Community.
Cellular radio communication involves wireless transmission and reception of signals at radio frequencies (RF). Base stations house equipment critical to the transmission and reception of signals. Power amplifier (PA) is a crucial element in base station assembly. PAs are expensive, take up space and dissipate heat. Of all the elements in the base station, it is difficult to design and operate a power amplifier. New designs of power amplifiers are constantly tested. One of the most important components required to perform this test successfully is a circuit simulator model of an entire communication system that generates a standard test signal. Standard test signals 524,288 data points in length require 1080 hours to complete one test of a PA model. In order to reduce the time taken to complete one test, a 'simulated test signal,' was generated. The objective of this study is to develop an algorithm to generate this 'simulated' test signal such that its characteristics match that of the 'standard' test signal. digital.library.unt.edu/ark:/67531/metadc4454/
Determination of the shelf life of aluminum electrolytic capacitors.
The aluminum electrolytic capacitor is used extensively in the electric utility industry. A factor limiting the storage of spare capacitors is the integrity of the aluminum oxide dielectric, which over time breaks down contributing to a shelf life currently estimated at one nuclear power electric generating station to be approximately five years. This project examined the electrical characteristics of naturally aged capacitors of several different styles to determine if design parameters were still within limits. Additionally, the effectiveness of a technique known as “Reforming” was examined to determine its impact on those characteristics. digital.library.unt.edu/ark:/67531/metadc3104/
Development of a Hybrid Molecular Ultraviolet Photodetector based on Guanosine Derivatives
Access: Use of this item is restricted to the UNT Community.
Modern studies on charge transfer reaction and conductivity measurements of DNA have shown that the electrical behavior of DNA ranges from that of an insulator to that of a wide bandgap semiconductor. Based on this property of DNA, a metal-semiconductor-metal photodetector is fabricated using a self-assembled layer of deoxyguanosine derivative (DNA base) deposited between gold electrodes. The electrodes are lithographically designed on a GaN substrate separated by a distance L (50nm < L < 100nm). This work examines the electrical and optical properties of such wide-bandgap semiconductor based biomaterial systems for their potential application as photodetectors in the UV region wherein most of the biological agents emit. The objective of this study was to develop a biomolecular electronic device and design an experimental setup for electrical and optical characterization of a novel hybrid molecular optoelectronic material system. AFM results proved the usage of Ga-Polar substrate in conjugation with DG molecules to be used as a potential electronic based sensor. A two-terminal nanoscale biomolectronic diode has been fabricated showing efficient rectification ratio. A nanoscale integrated ultraviolet photodetector (of dimensions less than 100 nm) has been fabricated with a cut-off wavelength at ~ 320 nm. digital.library.unt.edu/ark:/67531/metadc5586/
Effect of Amines as Corrosion Inhibitors for a Low Carbon Steel in Power Industry
Commonly used amines in power industry, including morpholine, DBU (1,8-diazabicyclo[5.4.0]undec-7-ene), and DMA (dimethylallylamine) were evaluated for their effect on AISI 1018 steel at 250oF. Samples were exposed to an autoclave containing amine added aqueous solution at pH of 9.5 for 1, 2, 4, 6, 8, and 12 hours. Morphology studies were carried using scanning electron microscope (SEM), phase analysis was done utilizing Fourier transform infrared spectroscopy (FTIR), and weight loss was performed to assess kinetics of oxidation. Control samples showed the highest metal dissolution rate. DBU showed the best performance in metal protection and SEM indicated the presence of a free-crack layer formed by fine particles in that set. FTIR showed that DBU apparently favored the formation of magnetite. It is believed that fine particles impede intrusion of aggressive ions into the metal surface by forming a barrier layer. FTIR demonstrated that DMA formed more oxyhydroxides, whereas morpholine presented magnetite to hematite transformation as early as 2 hours. SEM revealed that control and DMA produced acicular particles characteristic of oxyhydroxides while morpholine and DBU presented more equiaxed particles. digital.library.unt.edu/ark:/67531/metadc4666/
Effect of engineered surfaces on valve performance.
Access: Use of this item is restricted to the UNT Community.
Performance of air operated valves is a major maintenance concern in process industries. Anecdotal information indicates that reliability of some high maintenance valves has been improved by using an ion deposition process to achieve engineered surfaces on selected components. This project compared friction for various surface treatments of selected valve components. Results indicate valve performance may be slightly more consistent when an engineered surface is applied in the valve packing area; however surface treatment in this area does not appear to have a dominant affect on reducing valve friction. Results indicate a linear relation between stem friction and torque applied to packing flange nuts, and even after a valve is in service, controlled packing adjustments can be made without significantly changing valve stroke time. digital.library.unt.edu/ark:/67531/metadc2670/
Effects of a surface engineered metallic coating on elastomeric valve stem seal leakage
Valve stem seal leakage is a major source of fugitive emissions, and controlling these emissions can result in added expense in leak detection and repair programs. Elastomeric O-rings can be used as valve stem seals, and O-ring manufacturers recommend lubrication of elastomeric seals to prevent damage and to assure proper sealing. In this research, a metallic coating was applied as a lubricant using a vacuum vapor deposition process to the surface of elastomeric valve stem seals. Valve stem leak measurements were taken to determine if the coated O-rings, alone or with the recommended lubrication, reduced valve stem seal leakage. This research determined that the metallic coating did not reduce valve stem leakage. digital.library.unt.edu/ark:/67531/metadc2690/
Effects of minimum quantity lubrication in drilling 1018 steel.
A common goal for industrial manufacturers is to create a safer working environment and reduce production costs. One common method to achieve this goal is to drastically reduce cutting fluid use in machining. Recent advances in machining technologies have made it possible to perform machining with minimum-quantity lubrication (MQL). Drilling takes a key position in the realization of MQL machining. In this study the effects of using MQL in drilling AISI 1018 steel with HSS tools using a vegetable based lubricant were investigated. A full factorial experiment was conducted and regression models were generated for both surface finish and hole size. Lower surface roughness and higher tool life were observed in the lowest speed and feed rate combination. digital.library.unt.edu/ark:/67531/metadc9739/
Effects of Thickness and Indenter Tip Geometry in Nanoindentation of Nickel Films
Access: Use of this item is restricted to the UNT Community.
Nanoindentation has become a widely used technique to measure the mechanical properties of materials. Due to its capability to deform materials in micro- and nano-scale, nanoindentation has found more applications in characterizing the deformation behavior and determining the mechanical properties of thin films and coatings. This research deals with the characterization of samples received from Center for Advanced Microstructures and Devices (CAMD) and Integran Technologies Inc., Toronto, Canada and the objective of this investigation was to utilize the experimental data obtained from nanoindentation to determine the deformation behavior, mechanical properties of thin films on substrates and bulk materials, and the effect of geometrically different indenters (Berkovich, cubecorner, and conical). X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM) analysis were performed on these materials to determine the crystal orientation, grain size of the material, and also to measure any substrate effects like pile-up or sin-in respectively. The results indicate that indentation size effect (ISE) strongly depends on shape of the indenter and less sensitive to penetration depth where as the hardness measurements depends on shape of indenter and depth of penetration. There is a negligible strain rate dependency of hardness at deeper depths and a significant increase in the hardness due to the decrease in grain size and results also indicate that there is no significant substrate effect on thin films for 10% and 20% of film thicknesses. Nanocrystalline material could not validate a dislocation based mechanisms deformation for indentation made by cubecorner and conical indenters in depths less than 1mm. digital.library.unt.edu/ark:/67531/metadc4452/
Electrical resistivity as a measure of change of state in substrates: Design, development and validation of a microprocessor-based system.
Access: Use of this item is restricted to the UNT Community.
Smart structures are relevant and significant because of their relevance to phenomena such as hazard mitigation, structural health monitoring and energy saving. Electrical resistance could potentially serve as an indicator of structural well-being or damage in the structure. To this end, the development of a microprocessor-based automated resistance measurement system with customized GUI is desired. In this research, a nodal electrical resistance acquisition circuit (NERAC) system was designed. The system hardware interfaces to a laptop, which houses a customized GUI developed using DAQFactory software. Resistance/impedance was measured using DC/AC methods with four-point probes technique, on three substrates. Baseline reading before damage was noted and compared with the resistance measured after damage. The device was calibrated and validated on three different substrates. Resistance measurements were taken from PVDF samples, composite panels and smart concrete. Results conformed to previous work done on these substrates, validating the effective working of the NERAC device. digital.library.unt.edu/ark:/67531/metadc12149/
Evaluation of dynamic and static electrical characteristics for the DY8 and YI8 process gallium diodes in comparison to the DI8 process boron diodes.
Access: Use of this item is restricted to the UNT Community.
A rectifier is an electrical device, comprising one or more semiconductor devices arranged for converting alternating current to direct current by blocking the negative or positive portion of the waveform. The purpose of this study would be to evaluate dynamic and static electrical characteristics of rectifier chips fabricated with (a) DY8 process and (b) YI8 process and compare them with the existing DI8 process rectifiers. These new rectifiers were tested to compare their performance to meet or exceed requirements of lower forward voltages, leakage currents, reverse recovery time, and greater sustainability at higher temperatures compared to diodes manufactured using boron as base (DI8 process diodes) for similar input variables. digital.library.unt.edu/ark:/67531/metadc5614/
Factors influencing horizontal cracking in continuously reinforced concrete pavements (CRCP).
This research presents the results on an experimental investigation to identify the significant factors influencing horizontal cracking in continuously reinforced concrete pavements (CRCP). An in-depth analysis of the microstructure, morphological characteristics of the interfacial transition zone (ITZ) and the observation of cracking using the environmental scanning electron microscope (ESEM) was done. Characterization of oxides using Fourier transform infrared spectroscopy (FTIR) and electron dispersive x-ray spectroscopy (EDS) was also performed. Water to cement ratio (w/c) and rebar temperature had a significant influence on the rebar-concrete bond strength. The 28-day shear strength measurements showed an increase in rebar-concrete bond strength as the water to cement ratio (w/c) was reduced from 0.50 to 0.40. There was a reduction in the peak pullout load as the temperature increased from 14oF to 252oF for the corroded and non-corroded rebar experiments. The corroded rebar pullout test results showed a 20-50 % reduction in bond strength compared to the non-corroded rebars. FTIR measurements indicated a presence of lepidocrocrite (γ -FeOOH) and maghemite (γ -Fe2O3) on the ITZ. ESEM images showed the existence of microcracks as early as three days after casting with the bridging of these cracks between coarse aggregate locations in the interfacial zone propagating through the mortar. digital.library.unt.edu/ark:/67531/metadc9025/
FEM of nanoindentation on micro- and nanocrystalline Ni: Analysis of factors affecting hardness and modulus values.
Nanoindentation is a widely used technique to measure the mechanical properties of films with thickness ranging from nanometers to micrometers. A much better understanding of the contact mechanics is obtained mostly through finite element modeling. The experiments were modeled using the software package Nano SP1 that is based on COSMOSM™ (Structural Research & Analysis Corp, www.cosmosm.com), a finite element code. The fundamental material properties affecting pile-up are the ratio of the effective modulus to yield stress Eeff/σ and the work hardening behavior. Two separate cases of work hardening rates were considered; one with no work hardening rate and other with a linear work hardening rate. Specifically, it is observed that pile up is large only when hf/hmax is close to one and degree of work hardening rate is small. It should also be noted that when hf/hmax < 0.7 very little pile-up is observed no matter what the work-hardening behavior of the material. When pile-up occurs the contact area is greater than that predicted by the experimental methods and both the hardness and modulus are overestimated. In this report the amount by which these properties are overestimated are studied and got to be around 22% approx. Bluntness of the tip often leads to the misinterpretation of the load-displacement data. Further analysis was done in order to find out the amount of deviation from the ideal tip due to tip bluntness. Radius of the tips were also calculated for cubecorner (41.35 nm) and conical indenter (986.05 nm). digital.library.unt.edu/ark:/67531/metadc4844/
Flow Accelerated Corrosion Experience at Comanche Peak Steam Electric Station
Flow accelerated corrosion (FAC) is a major concern in the power industry as it causes thinning of the pipes by the dissolution of the passive oxide layer formed on the pipe surface. Present research deals with comparing the protection offered by the magnetite (Fe3O4) versus maghemite (γ-Fe2O3) phases thickness loss measurements. Fourier transform infrared spectroscopy (FTIR) is used in distinguishing these two elusive phases of iron oxides. Representative pipes are collected from high pressure steam extraction line of the secondary cycle of unit 2 of Comanche Peak Steam Electric Station (CPSES). Environmental scanning electron microscopy (ESEM) is used for morphological analysis. FTIR and X-ray diffraction (XRD) are used for phase analysis. Morphological analysis showed the presence of porous oxide surfaces with octahedral crystals, scallops and "chimney" like vents. FTIR revealed the predominance of maghemite at the most of the pipe sections. Results of thickness measurements indicate severe thickness loss at the bend areas (extrados) of the pipes. digital.library.unt.edu/ark:/67531/metadc6072/
FPGA Prototyping of a Watermarking Algorithm for MPEG-4
In the immediate future, multimedia product distribution through the Internet will become main stream. However, it can also have the side effect of unauthorized duplication and distribution of multimedia products. That effect could be a critical challenge to the legal ownership of copyright and intellectual property. Many schemes have been proposed to address these issues; one is digital watermarking which is appropriate for image and video copyright protection. Videos distributed via the Internet must be processed by compression for low bit rate, due to bandwidth limitations. The most widely adapted video compression standard is MPEG-4. Discrete cosine transform (DCT) domain watermarking is a secure algorithm which could survive video compression procedures and, most importantly, attacks attempting to remove the watermark, with a visibly degraded video quality result after the watermark attacks. For a commercial broadcasting video system, real-time response is always required. For this reason, an FPGA hardware implementation is studied in this work. This thesis deals with video compression, watermarking algorithms and their hardware implementation with FPGAs. A prototyping VLSI architecture will implement video compression and watermarking algorithms with the FPGA. The prototype is evaluated with video and watermarking quality metrics. Finally, it is seen that the video qualities of the watermarking at the uncompressed vs. the compressed domain are only 1dB of PSNR lower. However, the cost of compressed domain watermarking is the complexity of drift compensation for canceling the drifting effect. digital.library.unt.edu/ark:/67531/metadc3695/
Hardware and software codesign of a JPEG2000 watermarking encoder.
Analog technology has been around for a long time. The use of analog technology is necessary since we live in an analog world. However, the transmission and storage of analog technology is more complicated and in many cases less efficient than digital technology. Digital technology, on the other hand, provides fast means to be transmitted and stored. Digital technology continues to grow and it is more widely used than ever before. However, with the advent of new technology that can reproduce digital documents or images with unprecedented accuracy, it poses a risk to the intellectual rights of many artists and also on personal security. One way to protect intellectual rights of digital works is by embedding watermarks in them. The watermarks can be visible or invisible depending on the application and the final objective of the intellectual work. This thesis deals with watermarking images in the discrete wavelet transform domain. The watermarking process was done using the JPEG2000 compression standard as a platform. The hardware implementation was achieved using the ALTERA DSP Builder and SIMULINK software to program the DE2 ALTERA FPGA board. The JPEG2000 color transform and the wavelet transformation blocks were implemented using the hardware-in-the-loop (HIL) configuration. digital.library.unt.edu/ark:/67531/metadc9752/
Increasing the Dynamic Range of Audio THD Measurements Using a Novel Noise and Distortion Canceling Methodology
Access: Use of this item is restricted to the UNT Community.
The objective of this study was to determine how a new experimental methodology for measuring Total-Harmonic-Distortion (THD) of operational amplifiers functioned when compared with two standard methodologies, and whether the new methodology offers any improvement in noise floor and dynamic range along with distortion canceling of the sine-wave source used in the testing. The new methodology (THD) is being tested against two standard methodologies: Spectral Analysis using a tuned receiver type Spectrum Analyzer with Notch Filter pre-processing, and a digitized Fast Fourier Transform (FFT) using Notch Filter pre-processing. The THD results appear to agree across all methodologies, and across all items of the sample within all methodologies, to within a percent or less. The distortion and noise canceling feature of the new methodology appeared to function as expected and in accordance with theory. The sample tested in the study consisted of thirty-five NE5534 operational amplifiers produced by Texas Instruments, Inc. and purchased from a local store. The NE5534 is a low-noise, low-distortion, operational amplifier that is widely used in industry and is representative of today's best audio amplifiers. digital.library.unt.edu/ark:/67531/metadc4156/
Indoor Propagation Modeling at 2.4 GHz for IEEE 802.11 Networks
Indoor use of wireless systems poses one of the biggest design challenges. It is difficult to predict the propagation of a radio frequency wave in an indoor environment. To assist in deploying the above systems, characterization of the indoor radio propagation channel is essential. The contributions of this work are two-folds. First, in order to build a model, extensive field strength measurements are carried out inside two different buildings. Then, path loss exponents from log-distance path loss model and standard deviations from log-normal shadowing, which statistically describe the path loss models for a different transmitter receiver separations and scenarios, are determined. The purpose of this study is to characterize the indoor channel for 802.11 wireless local area networks at 2.4 GHz frequency. This thesis presents a channel model based on measurements conducted in commonly found scenarios in buildings. These scenarios include closed corridor, open corridor, classroom, and computer lab. Path loss equations are determined using log-distance path loss model and log-normal shadowing. The chi-square test statistic values for each access point are calculated to prove that the observed fading is a normal distribution at 5% significance level. Finally, the propagation models from the two buildings are compared to validate the generated equations. digital.library.unt.edu/ark:/67531/metadc4924/
Investigation of the feasibility of non-invasive carbon dioxide detection using spectroscopy in the visible spectrum.
Pulse oximeters are used in operating rooms and recovery rooms as a monitoring device for oxygen in the respiratory system of the patient. The advantage of pulse oximeters over other methods of oxygen monitoring is that they are easy to use and they are non-invasive, which means it is not necessary break the skin to extract blood for information to be obtained. The standard for the measurement of partial pressure of CO2 and O2 is an arterial blood gas analysis (ABG). However routine monitoring using this method on a continuous basis is impractical since it is slow, painful and invasive. Measuring carbon dioxide is critical to preventing ailments such as carbon dioxide poisoning or hypoxia. The problem is, currently there is no known effective non-invasive method for accurately measuring carbon dioxide in the body to properly assess the adequacy of ventilation. The objective of this study was to experimentally use spectroscopy in the visible spectrum and the principles of operation of a pulse oximeter to incorporate a method of non-invasive real-time carbon dioxide monitoring that is as quick and easy to use. digital.library.unt.edu/ark:/67531/metadc6142/
Laser Cutting Machine: Justification of initial costs
The Industrial Laser is firmly established in metalcutting as the tool of choice for many applications. The elevator division of Montgomery KONE Inc., in an effort to move towards quality, ontime, complete deliveries and 100% customer satisfaction, decided to invest in new equipment to improve manufacturing processes. A huge investment is proposed for a laser-cutting machine. It is the responsibility of Manufacturing Engineering to direct the management by justifying its benefits, which includes payback time and financial gains. Factors such as common line cutting, automated material handling system and cutting time were involved in justification of the initial cost of a laser-cutting machine. Comparative statistics on appropriate factors accurately determine and justify the initial cost of a laser-cutting machine. digital.library.unt.edu/ark:/67531/metadc2787/
Linearity and monotonicity of a 10-bit, 125 MHz, segmented current steering digital to analog converter
The purpose of this research is to determine the linearity and monotonicity of the THS5651IDW digital to analog converter (DAC), a prototype of the future Texas Instruments TLV5651, 10-bit, 125 MHz communication DAC. Testing was conducted at the Texas Instruments facility on Forest Lane, Dallas, Texas. Texas Instruments provided test equipment, software and laboratory space to obtain test data. Analysis of the data found the DAC to be monotonic since the magnitude of the differential nonlinearity (DNL) was less than ± 1 least significant bit (LSB) and the integral nonlinearity (INL) was less than ± 0.5 LSB. The study also showed that the DAC has primarily negative DNL although the DNL is well within the desired specification. digital.library.unt.edu/ark:/67531/metadc2541/
Liquid Nitrogen Propulsion Systems for Automotive Applications: Calculation of Mechanical Efficiency of a Dual, Double-acting Piston Propulsion System
A dual, double-acting propulsion system is analyzed to determine how efficiently it can convert the potential energy available from liquid nitrogen into useful work. The two double-acting pistons (high- and low-pressure) were analyzed by using a Matlab-Simulink computer simulation to determine their respective mechanical efficiencies. The flow circuit for the entire system was analyzed by using flow circuit analysis software to determine pressure losses throughout the system at the required mass flow rates. The results of the piston simulation indicate that the two pistons analyzed are very efficient at transferring energy into useful work. The flow circuit analysis shows that the system can adequately maintain the mass flow rate requirements of the pistons but also identifies components that have a significant impact on the performance of the system. The results of the analysis indicate that the nitrogen propulsion system meets the intended goals of its designers. digital.library.unt.edu/ark:/67531/metadc6070/
MBE Growth and Instrumentation
This thesis mainly aims at application of principles of engineering technology in the field of molecular beam epitaxy (MBE). MBE is a versatile technique for growing epitaxial thin films of semiconductors and metals by impinging molecular beams of atoms onto a heated substrate under ultra-high vacuum (UHV) conditions. Here, a LabVIEW® (laboratory virtual instrument engineering workbench) software (National Instruments Corp., http://www.ni.com/legal/termsofuse/unitedstates/usH) program is developed that would form the basis of a real-time control system that would transform MBE into a true-production technology. Growth conditions can be monitored in real-time with the help of reflection high energy electron diffraction (RHEED) technique. The period of one RHEED oscillation corresponds exactly to the growth of one monolayer of atoms of the semiconductor material. The PCI-1409 frame grabber card supplied by National Instruments is used in conjunction with the LabVIEW software to capture the RHEED images and capture the intensity of RHEED oscillations. The intensity values are written to a text file and plotted in the form of a graph. A fast Fourier transform of these oscillations gives the growth rate of the epi-wafer being grown. All the data being captured by the LabVIEW program can be saved to file forming a growth pedigree for future use. Unattended automation can be achieved by designing a control system that monitors the growth in real-time and compares it with the data recorded from the LabVIEW program from the previous growth and adjusts the growth parameters automatically thereby growing accurate device structures. digital.library.unt.edu/ark:/67531/metadc5243/
Micro-fabrication of a Mach-Zehnder interferometer combining laser direct writing and fountain pen micropatterning for chemical/biological sensing applications.
This research lays the foundation of a highly simplified maskless micro-fabrication technique which involves incorporation of laser direct writing technique combined with fountain pen based micro-patterning method to fabricate polymer-based Mach-Zehnder interferometer sensor arrays' prototype for chemical/biological sensing applications. The research provides methodology that focuses on maskless technology, allowing the definition and modification of geometric patterns through the programming of computer software, in contrast to the conventional mask-based photolithographic approach, in which a photomask must be produced before the device is fabricated. The finished waveguide sensors are evaluated on the basis of their performance as general interferometers. The waveguide developed using the fountain pen-based micro-patterning system is compared with the waveguide developed using the current technique of spin coating method for patterning of upper cladding of the waveguide. The resulting output power profile of the waveguides is generated to confirm their functionality as general interferometers. The results obtained are used to confirm the functionality of the simplified micro-fabrication technique for fabricating integrated optical polymer-based sensors and sensor arrays for chemical/biological sensing applications. digital.library.unt.edu/ark:/67531/metadc10989/
A model for designing a new telecommunication system in Mongolia
Access: Use of this item is restricted to the UNT Community.
The objective of this research is to design, and determine the feasibility of, a telecommunication system for the city of Erdenet, Mongolia. The Mongolian Telecommunication Company, Telecommunication Company of Erdenet city, and the National Statistical Office of Mongolia provided the data required for telecommunication forecasting of Erdenet. The literature review and analysis of the telecommunication forecasting indicate the need for a model of a new Telecommunication system in Erdenet, Mongolia. The model, as indicated, should become a useful example for planning and updating the telecommunication system in Mongolia. The design of a proposed telecommunication network involves the following considerations: analyzing and forecasting telephone traffic, calculating the required number of channels, determining exchange locations, traffic matrix, and establishing a basic hierarchical structure. digital.library.unt.edu/ark:/67531/metadc2768/
Nodal Resistance Measurement System
Access: Use of this item is restricted to the UNT Community.
The latest development in the measurement techniques has resulted in fast improvements in the instruments used for measurement of various electrical quantities. A common problem in such instruments is the automation of acquiring, retrieving and controlling the measurements by a computer or a laptop. In this study, nodal resistance measurement (NRM) system is developed to solve the above problem. The purpose of this study is to design and develop a compact electronic board, which measures electrical resistance, and a computer or a laptop controls the board. For the above purpose, surface nodal points are created on the surface of the sample electrically conductive material. The nodal points are connected to the compact electronic board and this board is connected to the computer. The user selects the nodal points, from the computer, between which the NRM system measures the electrical resistance and displays the measured quantity on the computer. digital.library.unt.edu/ark:/67531/metadc5568/
Preliminary design of a cryogenic thermoelectric generator.
A cryogenic thermoelectric generator is proposed to increase the efficiency of a vehicle propulsion system that uses liquid nitrogen as its fuel. The proposed design captures some of the heat required for vaporizing or initial heating of the liquid nitrogen to produce electricity. The thermoelectric generator uses pressurized liquid nitrogen as its cold reservoir and ambient air as the high-temperature reservoir to generate power. This study concentrated on the selection of thermoelectric materials whose properties would result in the highest efficiency over the operating temperature range and on estimating the initial size of the generator. The preliminary selection of materials is based upon their figure of merit at the operating temperatures. The results of this preliminary design investigation of the cryogenic thermoelectric generator indicate that sufficient additional energy can be used to increase overall efficiency of the thermodynamic cycle of a vehicle propulsion system. digital.library.unt.edu/ark:/67531/metadc3612/
Propagation analysis of a 900 MHz spread spectrum centralized traffic signal control system.
The objective of this research is to investigate different propagation models to determine if specified models accurately predict received signal levels for short path 900 MHz spread spectrum radio systems. The City of Denton, Texas provided data and physical facilities used in the course of this study. The literature review indicates that propagation models have not been studied specifically for short path spread spectrum radio systems. This work should provide guidelines and be a useful example for planning and implementing such radio systems. The propagation model involves the following considerations: analysis of intervening terrain, path length, and fixed system gains and losses. digital.library.unt.edu/ark:/67531/metadc5242/
Radio frequency propagation differences through various transmissive materials.
The purpose of this research was to determine which of the commonly used wireless telecommunication site concealment materials has the least effect on signal potency. The tested materials were Tuff Span® fiberglass panels manufactured by Enduro Composite Systems, Lexan® XL-1 polycarbonate plastic manufactured by GE Corporation and Styrofoam™ polystyrene board manufactured by The Dow Chemical Company. Testing was conducted in a double electrically isolated copper mesh screen room at the University of North Texas Engineering Technology Building in Denton, Texas. Analysis of the data found no differences exist between the radio frequency transmissiveness of these products at broadband personal communication service frequencies. However, differences in the signal do exist with regards to the angle of incidence between the material and the transmitting antenna. digital.library.unt.edu/ark:/67531/metadc5801/
Shear Wall Tests and Finite Element Analysis of Cold-Formed Steel Structural Members.
The research was focused on the three major structural elements of a typical cold-formed steel building - shear wall, floor joist, and column. Part 1 of the thesis explored wider options in the steel sheet sheathing for shear walls. An experimental research was conducted on 0.030 in and 0.033 in. (2:1 and 4:1 aspect ratios) and 0.027 in. (2:1 aspect ratio) steel sheet shear walls and the results provided nominal shear strengths for the American Iron and Steel Institute Lateral Design Standard. Part 2 of this thesis optimized the web hole profile for a new generation C-joist, and the web crippling strength was analyzed by finite element analysis. The results indicated an average 43% increase of web crippling strength for the new C-joist compared to the normal C-joist without web hole. To improve the structural efficiency of a cold-formed steel column, a new generation sigma (NGS) shaped column section was developed in Part 3 of this thesis. The geometry of NGS was optimized by the elastic and inelastic analysis using finite strip and finite element analysis. The results showed an average increment in axial compression strength for a single NGS section over a C-section was 117% for a 2 ft. long section and 135% for an 8 ft. long section; and for a double NGS section over a C-section was 75% for a 2 ft. long section and 103% for an 8 ft. long section. digital.library.unt.edu/ark:/67531/metadc9726/
A Study of Laser Direct Writing for All Polymer Single Mode Passive Optical Channel Waveguide Devices
The objective of this research is to investigate the use of laser direct writing to micro-pattern low loss passive optical channel waveguide devices using a new hybrid organic/inorganic polymer. Review of literature shows previous methods of optical waveguide device patterning as well as application of other non-polymer materials. System setup and design of the waveguide components are discussed. Results show that laser direct writing of the hybrid polymer produce single mode interconnects with a loss of less 1dB/cm. digital.library.unt.edu/ark:/67531/metadc9805/
Sunlight readability and luminance characteristics of light-emitting diode push button switches.
Lighted push button switches and indicators serve many purposes in cockpits, shipboard applications and military ground vehicles. The quality of lighting produced by switches is vital to operators' understanding of the information displayed. Utilizing LED technology in lighted switches has challenges that can adversely affect lighting quality. Incomplete data exists to educate consumers about potential differences in LED switch performance between different manufacturers. LED switches from four different manufacturers were tested for six attributes of lighting quality: average luminance and power consumption at full voltage, sunlight readable contrast, luminance contrast under ambient sunlight, legend uniformity, and dual-color uniformity. Three of the four manufacturers have not developed LED push button switches that meet lighting quality standards established with incandescent technology. digital.library.unt.edu/ark:/67531/metadc4520/
Surface Plasmon Based Nanophotonic Optical Emitters
Access: Use of this item is restricted to the UNT Community.
Group- III nitride based semiconductors have emerged as the leading material for short wavelength optoelectronic devices. The InGaN alloy system forms a continuous and direct bandgap semiconductor spanning ultraviolet (UV) to blue/green wavelengths. An ideal and highly efficient light-emitting device can be designed by enhancing the spontaneous emission rate. This thesis deals with the design and fabrication of a visible light-emitting device using GaN/InGaN single quantum well (SQW) system with enhanced spontaneous emission. To increase the emission efficiency, layers of different metals, usually noble metals like silver, gold and aluminum are deposited on GaN/InGaN SQWs using metal evaporator. Surface characterization of metal-coated GaN/InGaN SQW samples was carried out using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Photoluminescence is used as a tool for optical characterization to study the enhancement in the light emitting structures. This thesis also compares characteristics of different metals on GaN/InGaN SQW system thus allowing selection of the most appropriate material for a particular application. It was found out that photons from the light emitter couple more to the surface plasmons if the bandgap of former is close to the surface plasmon resonant energy of particular metal. Absorption of light due to gold reduces the effective mean path of light emitted from the light emitter and hence quenches the quantum well emission peak compared to the uncoated sample. digital.library.unt.edu/ark:/67531/metadc5584/
Susceptibility of a digital turbine control system to IEEE 802.11 compliant emissions.
Within the nuclear industry, there have been numerous instances of radio transmissions interfering with sensitive plant equipment. Instances documented vary from minor instrument fluctuations to major plant transients including reactor trips. With the nuclear power industry moving toward digital technologies for control and reactor protection systems, concern exists regarding their potential susceptibility to contemporary wireless telecommunications technologies. This study evaluates the susceptibility of Comanche Peak's planned turbine controls upgrade to IEEE 802.11 compliant wireless radio emissions. The study includes a review of previous research, industry emissions standards, and technical overview of the various IEEE 802.11 protocols and details the testing methodology utilized to evaluate the digital control system. The results of this study concluded that the subject digital control system was unaffected by IEEE 802.11 compliant emissions even when the transmitter was in direct contact with sensitive components. digital.library.unt.edu/ark:/67531/metadc4433/
Synthesis of cubic boron nitride thin films on silicon substrate using electron beam evaporation.
Access: Use of this item is restricted to the UNT Community.
Cubic boron nitride (cBN) synthesis has gained lot of interest during the past decade as it offers outstanding physical and chemical properties like high hardness, high wear resistance, and chemical inertness. Despite of their excellent properties, every application of cBN is hindered by high compressive stresses and poor adhesion. The cost of equipment is also high in almost all the techniques used so far. This thesis deals with the synthesis of cubic phase of boron nitride on Si (100) wafers using electron beam evaporator, a low cost equipment that is capable of depositing films with reduced stresses. Using this process, need of ion beam employed in ion beam assisted processes can be eliminated thus reducing the surface damage and enhancing the film adhesion. Four sets of samples have been deposited by varying substrate temperature and the deposition time. scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR) techniques have been used to determine the structure and composition of the films deposited. X-ray diffraction (XRD) was performed on one of the samples to determine the thickness of the film deposited for the given deposition rate. Several samples showed dendrites being formed as a stage of film formation. It was found that deposition at substrate temperature of 400oC and for a period of one hour yielded high quality cubic boron nitride films. digital.library.unt.edu/ark:/67531/metadc5542/
Using Motor Electrical Signature Analysis to Determine the Mechanical Condition of Vane-Axial Fans
The purpose of this research was a proof of concept using a fan motor stator as transducer to monitor motor rotor and attached axial fan for mechanical motion. The proof was to determine whether bearing faults and fan imbalances could be detected in vane-axial fans using Motor Electrical Signature Analysis (MESA). The data was statistically analyzed to determine if the MESA systems could distinguish between baseline conditions and discrete fault frequencies for the three test conditions: bearing inner race defect, bearing outer race defect, and fan imbalance. The statistical conclusions for these proofs of concept were that MESA could identify all three faulted conditions. digital.library.unt.edu/ark:/67531/metadc3256/
A Verilog 8051 Soft Core for FPGA Applications
The objective of this thesis was to develop an 8051 microcontroller soft core in the Verilog hardware description language (HDL). Each functional unit of the 8051 microcontroller was developed as a separate module, and tested for functionality using the open-source VHDL Dalton model as benchmark. These modules were then integrated to operate as concurrent processes in the 8051 soft core. The Verilog 8051 soft core was then synthesized in Quartus® II simulation and synthesis environment (Altera Corp., San Jose, CA, www.altera.com) and yielded the expected behavioral response to test programs written in 8051 assembler residing in the v8051 ROM. The design can operate at speeds up to 41 MHz and used only 16% of the FPGA fabric, thus allowing complex systems to be designed on a single chip. Further research and development can be performed on v8051 to enhance performance and functionality. digital.library.unt.edu/ark:/67531/metadc11013/