You limited your search to:

  Partner: UNT Libraries
 Department: Department of Computer Science and Engineering
 Degree Level: Doctoral
3D Reconstruction Using Lidar and Visual Images

3D Reconstruction Using Lidar and Visual Images

Date: December 2012
Creator: Duraisamy, Prakash
Description: In this research, multi-perspective image registration using LiDAR and visual images was considered. 2D-3D image registration is a difficult task because it requires the extraction of different semantic features from each modality. This problem is solved in three parts. The first step involves detection and extraction of common features from each of the data sets. The second step consists of associating the common features between two different modalities. Traditional methods use lines or orthogonal corners as common features. The third step consists of building the projection matrix. Many existing methods use global positing system (GPS) or inertial navigation system (INS) for an initial estimate of the camera pose. However, the approach discussed herein does not use GPS, INS, or any such devices for initial estimate; hence the model can be used in places like the lunar surface or Mars where GPS or INS are not available. A variation of the method is also described, which does not require strong features from both images but rather uses intensity gradients in the image. This can be useful when one image does not have strong features (such as lines) or there are too many extraneous features.
Contributing Partner: UNT Libraries
Adaptive planning and prediction in agent-supported distributed collaboration.

Adaptive planning and prediction in agent-supported distributed collaboration.

Date: December 2004
Creator: Hartness, Ken T. N.
Description: Agents that act as user assistants will become invaluable as the number of information sources continue to proliferate. Such agents can support the work of users by learning to automate time-consuming tasks and filter information to manageable levels. Although considerable advances have been made in this area, it remains a fertile area for further development. One application of agents under careful scrutiny is the automated negotiation of conflicts between different user's needs and desires. Many techniques require explicit user models in order to function. This dissertation explores a technique for dynamically constructing user models and the impact of using them to anticipate the need for negotiation. Negotiation is reduced by including an advising aspect to the agent that can use this anticipation of conflict to adjust user behavior.
Contributing Partner: UNT Libraries
Automated Real-time Objects Detection in Colonoscopy Videos for Quality Measurements

Automated Real-time Objects Detection in Colonoscopy Videos for Quality Measurements

Date: August 2013
Creator: Kumara, Muthukudage Jayantha
Description: The effectiveness of colonoscopy depends on the quality of the inspection of the colon. There was no automated measurement method to evaluate the quality of the inspection. This thesis addresses this issue by investigating an automated post-procedure quality measurement technique and proposing a novel approach automatically deciding a percentage of stool areas in images of digitized colonoscopy video files. It involves the classification of image pixels based on their color features using a new method of planes on RGB (red, green and blue) color space. The limitation of post-procedure quality measurement is that quality measurements are available long after the procedure was done and the patient was released. A better approach is to inform any sub-optimal inspection immediately so that the endoscopist can improve the quality in real-time during the procedure. This thesis also proposes an extension to post-procedure method to detect stool, bite-block, and blood regions in real-time using color features in HSV color space. These three objects play a major role in quality measurements in colonoscopy. The proposed method partitions very large positive examples of each of these objects into a number of groups. These groups are formed by taking intersection of positive examples with a hyper plane. ...
Contributing Partner: UNT Libraries
Bayesian Probabilistic Reasoning Applied to Mathematical Epidemiology for Predictive Spatiotemporal Analysis of Infectious Diseases

Bayesian Probabilistic Reasoning Applied to Mathematical Epidemiology for Predictive Spatiotemporal Analysis of Infectious Diseases

Date: May 2006
Creator: Abbas, Kaja Moinudeen
Description: Abstract Probabilistic reasoning under uncertainty suits well to analysis of disease dynamics. The stochastic nature of disease progression is modeled by applying the principles of Bayesian learning. Bayesian learning predicts the disease progression, including prevalence and incidence, for a geographic region and demographic composition. Public health resources, prioritized by the order of risk levels of the population, will efficiently minimize the disease spread and curtail the epidemic at the earliest. A Bayesian network representing the outbreak of influenza and pneumonia in a geographic region is ported to a newer region with different demographic composition. Upon analysis for the newer region, the corresponding prevalence of influenza and pneumonia among the different demographic subgroups is inferred for the newer region. Bayesian reasoning coupled with disease timeline is used to reverse engineer an influenza outbreak for a given geographic and demographic setting. The temporal flow of the epidemic among the different sections of the population is analyzed to identify the corresponding risk levels. In comparison to spread vaccination, prioritizing the limited vaccination resources to the higher risk groups results in relatively lower influenza prevalence. HIV incidence in Texas from 1989-2002 is analyzed using demographic based epidemic curves. Dynamic Bayesian networks are integrated with ...
Contributing Partner: UNT Libraries
Design and Implementation of Large-Scale Wireless Sensor Networks for Environmental Monitoring Applications

Design and Implementation of Large-Scale Wireless Sensor Networks for Environmental Monitoring Applications

Date: May 2010
Creator: Yang, Jue
Description: Environmental monitoring represents a major application domain for wireless sensor networks (WSN). However, despite significant advances in recent years, there are still many challenging issues to be addressed to exploit the full potential of the emerging WSN technology. In this dissertation, we introduce the design and implementation of low-power wireless sensor networks for long-term, autonomous, and near-real-time environmental monitoring applications. We have developed an out-of-box solution consisting of a suite of software, protocols and algorithms to provide reliable data collection with extremely low power consumption. Two wireless sensor networks based on the proposed solution have been deployed in remote field stations to monitor soil moisture along with other environmental parameters. As parts of the ever-growing environmental monitoring cyberinfrastructure, these networks have been integrated into the Texas Environmental Observatory system for long-term operation. Environmental measurement and network performance results are presented to demonstrate the capability, reliability and energy-efficiency of the network.
Contributing Partner: UNT Libraries
Detection of Temporal Events and Abnormal Images for Quality Analysis in Endoscopy Videos

Detection of Temporal Events and Abnormal Images for Quality Analysis in Endoscopy Videos

Date: August 2013
Creator: Nawarathna, Ruwan D.
Description: Recent reports suggest that measuring the objective quality is very essential towards the success of colonoscopy. Several quality indicators (i.e. metrics) proposed in recent studies are implemented in software systems that compute real-time quality scores for routine screening colonoscopy. Most quality metrics are derived based on various temporal events occurred during the colonoscopy procedure. The location of the phase boundary between the insertion and the withdrawal phases and the amount of circumferential inspection are two such important temporal events. These two temporal events can be determined by analyzing various camera motions of the colonoscope. This dissertation put forward a novel method to estimate X, Y and Z directional motions of the colonoscope using motion vector templates. Since abnormalities of a WCE or a colonoscopy video can be found in a small number of frames (around 5% out of total frames), it is very helpful if a computer system can decide whether a frame has any mucosal abnormalities. Also, the number of detected abnormal lesions during a procedure is used as a quality indicator. Majority of the existing abnormal detection methods focus on detecting only one type of abnormality or the overall accuracies are somewhat low if the method tries to ...
Contributing Partner: UNT Libraries
Direct Online/Offline Digital Signature Schemes.

Direct Online/Offline Digital Signature Schemes.

Date: December 2008
Creator: Yu, Ping
Description: Online/offline signature schemes are useful in many situations, and two such scenarios are considered in this dissertation: bursty server authentication and embedded device authentication. In this dissertation, new techniques for online/offline signing are introduced, those are applied in a variety of ways for creating online/offline signature schemes, and five different online/offline signature schemes that are proved secure under a variety of models and assumptions are proposed. Two of the proposed five schemes have the best offline or best online performance of any currently known technique, and are particularly well-suited for the scenarios that are considered in this dissertation. To determine if the proposed schemes provide the expected practical improvements, a series of experiments were conducted comparing the proposed schemes with each other and with other state-of-the-art schemes in this area, both on a desktop class computer, and under AVR Studio, a simulation platform for an 8-bit processor that is popular for embedded systems. Under AVR Studio, the proposed SGE scheme using a typical key size for the embedded device authentication scenario, can complete the offline phase in about 24 seconds and then produce a signature (the online phase) in 15 milliseconds, which is the best offline performance of any known ...
Contributing Partner: UNT Libraries
Exploring Privacy in Location-based Services Using Cryptographic Protocols

Exploring Privacy in Location-based Services Using Cryptographic Protocols

Date: May 2011
Creator: Vishwanathan, Roopa
Description: Location-based services (LBS) are available on a variety of mobile platforms like cell phones, PDA's, etc. and an increasing number of users subscribe to and use these services. Two of the popular models of information flow in LBS are the client-server model and the peer-to-peer model, in both of which, existing approaches do not always provide privacy for all parties concerned. In this work, I study the feasibility of applying cryptographic protocols to design privacy-preserving solutions for LBS from an experimental and theoretical standpoint. In the client-server model, I construct a two-phase framework for processing nearest neighbor queries using combinations of cryptographic protocols such as oblivious transfer and private information retrieval. In the peer-to-peer model, I present privacy preserving solutions for processing group nearest neighbor queries in the semi-honest and dishonest adversarial models. I apply concepts from secure multi-party computation to realize our constructions and also leverage the capabilities of trusted computing technology, specifically TPM chips. My solution for the dishonest adversarial model is also of independent cryptographic interest. I prove my constructions secure under standard cryptographic assumptions and design experiments for testing the feasibility or practicability of our constructions and benchmark key operations. My experiments show that the proposed ...
Contributing Partner: UNT Libraries
Exploring Trusted Platform Module Capabilities: A Theoretical and Experimental Study

Exploring Trusted Platform Module Capabilities: A Theoretical and Experimental Study

Date: May 2008
Creator: Gunupudi, Vandana
Description: Trusted platform modules (TPMs) are hardware modules that are bound to a computer's motherboard, that are being included in many desktops and laptops. Augmenting computers with these hardware modules adds powerful functionality in distributed settings, allowing us to reason about the security of these systems in new ways. In this dissertation, I study the functionality of TPMs from a theoretical as well as an experimental perspective. On the theoretical front, I leverage various features of TPMs to construct applications like random oracles that are impossible to implement in a standard model of computation. Apart from random oracles, I construct a new cryptographic primitive which is basically a non-interactive form of the standard cryptographic primitive of oblivious transfer. I apply this new primitive to secure mobile agent computations, where interaction between various entities is typically required to ensure security. I prove these constructions are secure using standard cryptographic techniques and assumptions. To test the practicability of these constructions and their applications, I performed an experimental study, both on an actual TPM and a software TPM simulator which has been enhanced to make it reflect timings from a real TPM. This allowed me to benchmark the performance of the applications and test ...
Contributing Partner: UNT Libraries
Extrapolating Subjectivity Research to Other Languages

Extrapolating Subjectivity Research to Other Languages

Date: May 2013
Creator: Banea, Carmen
Description: Socrates articulated it best, "Speak, so I may see you." Indeed, language represents an invisible probe into the mind. It is the medium through which we express our deepest thoughts, our aspirations, our views, our feelings, our inner reality. From the beginning of artificial intelligence, researchers have sought to impart human like understanding to machines. As much of our language represents a form of self expression, capturing thoughts, beliefs, evaluations, opinions, and emotions which are not available for scrutiny by an outside observer, in the field of natural language, research involving these aspects has crystallized under the name of subjectivity and sentiment analysis. While subjectivity classification labels text as either subjective or objective, sentiment classification further divides subjective text into either positive, negative or neutral. In this thesis, I investigate techniques of generating tools and resources for subjectivity analysis that do not rely on an existing natural language processing infrastructure in a given language. This constraint is motivated by the fact that the vast majority of human languages are scarce from an electronic point of view: they lack basic tools such as part-of-speech taggers, parsers, or basic resources such as electronic text, annotated corpora or lexica. This severely limits the ...
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 5 NEXT LAST