## You limited your search to:

**Partner:**UNT Libraries

**Department:**Department of Computer Science

**Degree Level:**Doctoral

### An Adaptive Linearization Method for a Constraint Satisfaction Problem in Semiconductor Device Design Optimization

**Date:**May 1999

**Creator:**Chang, Chih-Hui, 1967-

**Description:**The device optimization is a very important element in semiconductor technology advancement. Its objective is to find a design point for a semiconductor device so that the optimized design goal meets all specified constraints. As in other engineering fields, a nonlinear optimizer is often used for design optimization. One major drawback of using a nonlinear optimizer is that it can only partially explore the design space and return a local optimal solution. This dissertation provides an adaptive optimization design methodology to allow the designer to explore the design space and obtain a globally optimal solution. One key element of our method is to quickly compute the set of all feasible solutions, also called the acceptability region. We described a polytope-based representation for the acceptability region and an adaptive linearization technique for device performance model approximation. These efficiency enhancements have enabled significant speed-up in estimating acceptability regions and allow acceptability regions to be estimated for a larger class of device design tasks. Our linearization technique also provides an efficient mechanism to guarantee the global accuracy of the computed acceptability region. To visualize the acceptability region, we study the orthogonal projection of high-dimensional convex polytopes and propose an output sensitive algorithm for ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc500248/

### Algorithms for Efficient Utilization of Wireless Bandwidth and to Provide Quality-of-Service in Wireless Networks

**Date:**August 2000

**Creator:**Kakani, Naveen Kumar

**Description:**This thesis presents algorithms to utilize the wireless bandwidth efficiently and at the same time meet the quality of service (QoS) requirements of the users. In the proposed algorithms we present an adaptive frame structure based upon the airlink frame loss probability and control the admission of call requests into the system based upon the load on the system and the QoS requirements of the incoming call requests. The performance of the proposed algorithms is studied by developing analytical formulations and simulation experiments. Finally we present an admission control algorithm which uses an adaptive delay computation algorithm to compute the queuing delay for each class of traffic and adapts the service rate and the reliability in the estimates based upon the deviation in the expected and obtained performance. We study the performance of the call admission control algorithm by simulation experiments. Simulation results for the adaptive frame structure algorithm show an improvement in the number of users in the system but there is a drop in the system throughput. In spite of the lower throughput the adaptive frame structure algorithm has fewer QoS delay violations. The adaptive call admission control algorithm adapts the call dropping probability of different classes of ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc2635/

### Automatic Speech Recognition Using Finite Inductive Sequences

**Date:**August 1996

**Creator:**Cherri, Mona Youssef, 1956-

**Description:**This dissertation addresses the general problem of recognition of acoustic signals which may be derived from speech, sonar, or acoustic phenomena. The specific problem of recognizing speech is the main focus of this research. The intention is to design a recognition system for a definite number of discrete words. For this purpose specifically, eight isolated words from the T1MIT database are selected. Four medium length words "greasy," "dark," "wash," and "water" are used. In addition, four short words are considered "she," "had," "in," and "all." The recognition system addresses the following issues: filtering or preprocessing, training, and decision-making. The preprocessing phase uses linear predictive coding of order 12. Following the filtering process, a vector quantization method is used to further reduce the input data and generate a finite inductive sequence of symbols representative of each input signal. The sequences generated by the vector quantization process of the same word are factored, and a single ruling or reference template is generated and stored in a codebook. This system introduces a new modeling technique which relies heavily on the basic concept that all finite sequences are finitely inductive. This technique is used in the training stage. In order to accommodate the variabilities ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc277749/

### Computational Complexity of Hopfield Networks

**Date:**August 1998

**Creator:**Tseng, Hung-Li

**Description:**There are three main results in this dissertation. They are PLS-completeness of discrete Hopfield network convergence with eight different restrictions, (degree 3, bipartite and degree 3, 8-neighbor mesh, dual of the knight's graph, hypercube, butterfly, cube-connected cycles and shuffle-exchange), exponential convergence behavior of discrete Hopfield network, and simulation of Turing machines by discrete Hopfield Network.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc278272/

### Computer Realization of Human Music Cognition

**Date:**August 1988

**Creator:**Albright, Larry E. (Larry Eugene)

**Description:**This study models the human process of music cognition on the digital computer. The definition of music cognition is derived from the work in music cognition done by the researchers Carol Krumhansl and Edward Kessler, and by Mari Jones, as well as from the music theories of Heinrich Schenker. The computer implementation functions in three stages. First, it translates a musical "performance" in the form of MIDI (Musical Instrument Digital Interface) messages into LISP structures. Second, the various parameters of the performance are examined separately a la Jones's joint accent structure, quantified according to psychological findings, and adjusted to a common scale. The findings of Krumhansl and Kessler are used to evaluate the consonance of each note with respect to the key of the piece and with respect to the immediately sounding harmony. This process yields a multidimensional set of points, each of which is a cognitive evaluation of a single musical event within the context of the piece of music within which it occurred. This set of points forms a metric space in multi-dimensional Euclidean space. The third phase of the analysis maps the set of points into a topology-preserving data structure for a Schenkerian-like middleground structural analysis. This ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc330819/

### Convexity-Preserving Scattered Data Interpolation

**Date:**December 1995

**Creator:**Leung, Nim Keung

**Description:**Surface fitting methods play an important role in many scientific fields as well as in computer aided geometric design. The problem treated here is that of constructing a smooth surface that interpolates data values associated with scattered nodes in the plane. The data is said to be convex if there exists a convex interpolant. The problem of convexity-preserving interpolation is to determine if the data is convex, and construct a convex interpolant if it exists.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc277609/

### Efficient Linked List Ranking Algorithms and Parentheses Matching as a New Strategy for Parallel Algorithm Design

**Date:**December 1993

**Creator:**Halverson, Ranette Hudson

**Description:**The goal of a parallel algorithm is to solve a single problem using multiple processors working together and to do so in an efficient manner. In this regard, there is a need to categorize strategies in order to solve broad classes of problems with similar structures and requirements. In this dissertation, two parallel algorithm design strategies are considered: linked list ranking and parentheses matching.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc278153/

### Exon/Intron Discrimination Using the Finite Induction Pattern Matching Technique

**Date:**December 1997

**Creator:**Taylor, Pamela A., 1941-

**Description:**DNA sequence analysis involves precise discrimination of two of the sequence's most important components: exons and introns. Exons encode the proteins that are responsible for almost all the functions in a living organism. Introns interrupt the sequence coding for a protein and must be removed from primary RNA transcripts before translation to protein can occur. A pattern recognition technique called Finite Induction (FI) is utilized to study the language of exons and introns. FI is especially suited for analyzing and classifying large amounts of data representing sequences of interest. It requires no biological information and employs no statistical functions. Finite Induction is applied to the exon and intron components of DNA by building a collection of rules based upon what it finds in the sequences it examines. It then attempts to match the known rule patterns with new rules formed as a result of analyzing a new sequence. A high number of matches predict a probable close relationship between the two sequences; a low number of matches signifies a large amount of difference between the two. This research demonstrates FI to be a viable tool for measurement when known patterns are available for the formation of rule sets.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc277629/

### Higher Compression from the Burrows-Wheeler Transform with New Algorithms for the List Update Problem

**Date:**August 2001

**Creator:**Chapin, Brenton

**Description:**Burrows-Wheeler compression is a three stage process in which the data is transformed with the Burrows-Wheeler Transform, then transformed with Move-To-Front, and finally encoded with an entropy coder. Move-To-Front, Transpose, and Frequency Count are some of the many algorithms used on the List Update problem. In 1985, Competitive Analysis first showed the superiority of Move-To-Front over Transpose and Frequency Count for the List Update problem with arbitrary data. Earlier studies due to Bitner assumed independent identically distributed data, and showed that while Move-To-Front adapts to a distribution faster, incurring less overwork, the asymptotic costs of Frequency Count and Transpose are less. The improvements to Burrows-Wheeler compression this work covers are increases in the amount, not speed, of compression. Best x of 2x-1 is a new family of algorithms created to improve on Move-To-Front's processing of the output of the Burrows-Wheeler Transform which is like piecewise independent identically distributed data. Other algorithms for both the middle stage of Burrows-Wheeler compression and the List Update problem for which overwork, asymptotic cost, and competitive ratios are also analyzed are several variations of Move One From Front and part of the randomized algorithm Timestamp. The Best x of 2x - 1 family includes Move-To-Front, ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc2909/

### Inheritance Problems in Object-Oriented Database

**Date:**May 1989

**Creator:**Auepanwiriyakul, Raweewan

**Description:**This research is concerned with inheritance as used in object-oriented database. More specifically, partial bi-directional inheritance among classes is examined. In partial inheritance, a class can inherit a proper subset of instance variables from another class. Two subclasses of the same superclass do not need to inherit the same proper subset of instance variables from their superclass. Bi-directional partial inheritance allows a class to inherit instance variables from its subclass. The prototype of an object-oriented database that supports both full and partial bi-directional inheritance among classes was developed on top of an existing relational database management system. The prototype was tested with two database applications. One database application needs full and partial inheritance. The second database application required bi-directional inheritance. The result of this testing suggests both advantages and disadvantages of partial bi-directional inheritance. Future areas of research are also suggested.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc330898/