This system will be undergoing maintenance April 18th between 9:00AM and 12:00PM CDT.

Search Results

Note: All results matching your query require you to be a member of the UNT Community (you must be on campus or login with university credentials for access).
Bioavailability and toxicity of 2,4,6-trinitrotoluene in sediment.
TNT (2,4,6-trinitrotoluene) is a persistent contaminant at many military installations and poses a threat to aquatic ecosystems. Data from environmental fate and toxicity studies with TNT revealed that sediment toxicity test procedures required modification to accurately assess sediment TNT toxicity. Key modifications included aging TNT-spiked sediments 8-14 d, basing lethal dose on measured sediment concentrations of the molar sum of TNT and its main nitroaromatic (NA) transformation products (SNA), basing sublethal dose on average sediment SNA concentrations obtained from integration of sediment SNA transformation models, avoiding overlying water exchanges, and minimizing toxicity test durations. Solid phase microextraction fibers (SPMEs) were investigated as a biomimetic chemical measure of toxicity and bioavailability. Both organism and SPME concentrations provided measures of lethal dose independent of exposure scenario (TNT-spiked sediment or TNT-spiked water) for Tubifex tubifex. Among all benthic organisms tested (Chironomus tentans, Ceriodaphnia dubia, T. tubifex) and matrixes, median lethal dose (LC50) estimates based on SPME and organism concentrations ranged from 12.6 to 55.3 mmol SNA/ml polyacrylate and 83.4 to 172.3 nmol SNA/g tissue, ww, respectively. For Tubifex, LC50s (95% CI) based on SNA concentrations in sediment and SPMEs were 223 (209-238) nmol SNA/g, dw and 27.8 (26.0-29.8) mmol SNA/ml, respectively. Reproductive effects occurred at slightly lower exposures. Median effective dose (EC50) estimates (95% CI) for Tubifex cocoon production, based on sediment and SPME concentrations, were 118 (114-122) nmol SNA/g, dw and 21.8 (21.2-22.4) mmol SNA/ml, respectively. Bioconcentration experiments with Tubifex revealed that compound hydrophobicity predicted the toxicokinetics and bioconcentration of these compounds from water, however, there was a large discrepancy between the toxicokinetics of absorbed versus metabolically-generated aminodinitrotoluenes. A large portion of bioconcentrated, radiolabeled TNT transformation products could not be identified. In addition to their ability to provide matrix-independent measures of dose, SPME concentrations were more accurate indicators of bioavailable NAs than …
City of Denton Municipal Solid Waste Characterization and Management Strategies
Due to concern about diminishing landfill space, the City of Denton contracted a municipal solid waste characterization study in 1999 that would identify materials for diversion. This paper describes the results of 5 1-week waste sorting events, a scale-house analysis, a recycling participation study, a recycler profile and a similar city study. The results of the characterization studies suggest that at least 50% of each waste stream is recyclable or divertible though paper products accounted for no more than 45% by weight of any waste stream. Curbside recycling participation rate was 71% during the 6-week study period though the average weekly set-out rate was 37%. Recycling participation rates varied significantly by zip code and by home value categories but not by gender. Denton is fairly progressive in its waste management approach when compared to demographically similar cities on a 15-question assessment though recommendations for improvement have been identified.
A Data Fusion Framework for Floodplain Analysis using GIS and Remotely Sensed Data
Throughout history floods have been part of the human experience. They are recurring phenomena that form a necessary and enduring feature of all river basin and lowland coastal systems. In an average year, they benefit millions of people who depend on them. In the more developed countries, major floods can be the largest cause of economic losses from natural disasters, and are also a major cause of disaster-related deaths in the less developed countries. Flood disaster mitigation research was conducted to determine how remotely sensed data can effectively be used to produce accurate flood plain maps (FPMs), and to identify/quantify the sources of error associated with such data. Differences were analyzed between flood maps produced by an automated remote sensing analysis tailored to the available satellite remote sensing datasets (rFPM), the 100-year flooded areas "predicted" by the Flood Insurance Rate Maps, and FPMs based on DEM and hydrological data (aFPM). Landuse/landcover was also examined to determine its influence on rFPM errors. These errors were identified and the results were integrated in a GIS to minimize landuse / landcover effects. Two substantial flood events were analyzed. These events were selected because of their similar characteristics (i.e., the existence of FIRM or Q3 data; flood data which included flood peaks, rating curves, and flood profiles; and DEM and remote sensing imagery.) Automatic feature extraction was determined to be an important component for successful flood analysis. A process network, in conjunction with domain specific information, was used to map raw remotely sensed data onto a representation that is more compatible with a GIS data model. From a practical point of view, rFPM provides a way to automatically match existing data models to the type of remote sensing data available for each event under investigation. Overall, results showed how remote sensing could contribute to …
Development of a Procedure to Evaluate Groundwater Quality and Potential Sources of Contamination in the East Texas Basin
This study contributes a procedure, based on data analysis and geostatistical methods, to evaluate the distribution of chemical ratios and differentiate natural and anthropogenic contaminant sources of groundwater quality in the East Texas Basin. Four aquifers were studied, Sparta, Queen City, Carrizo and Wilcox. In this study, Carrizo- Wilcox is considered as one aquifer, and Sparta-Queen City as another. These aquifers were divided into depth categories, 0-150 feet for Sparta-Queen City and 300-600 feet and 600-900 feet for Carrizo-Wilcox in order to identify individual sources of contamination. Natural sources include aquifer mineral make up, salt domes and lignite beds. Major anthropogenic sources include lignite and salt dome mining and oil-gas production. Chemical ratios selected were Na/Cl, Ca/Cl, Mg/Cl, SO4/Cl, (Na+Cl)/TDS, SO4/Ca and (Ca+Mg)/(Na+K). Ratio distributions and their relationships were examined to evaluate physical-chemical processes occurring in the study area. Potential contaminant sources were used to divide the Basin into three areas: Area 1 to the east, Area 2 in the west and Area 3 in the center. Bivariate analysis was used to uncover differences between the areas. The waters in Area 1 are potentially impacted primarily from oil field waters. Sources present in Area 2 include lignite beds and oil field operations. Area 3 is the cap rock of salt domes that can contain gypsum and anhydrite. Based on the exploratory data analysis (Na+Cl)/TDS, (Ca+Mg)/(Na+K), and SO4/Ca ratios were chosen for geostatistical analysis. Chemical ratios that provided indications of cation exchange, salt domes and oil fields were (Na+Cl)/TDS, (Ca+Mg)/(Na+K) and SO4/Ca. In the Sparta-Queen City 150 zone the procedure did not provide a good method for differentiating between contaminant sources. However, the procedure was effective to indicate impacted ground water in the Carrizo-Wilcox 600 and 900 foot zones.
Development, Validation, and Evaluation of a Continuous, Real-time, Bivalve Biomonitoring System
A biological monitoring tool to assess water quality using bivalve gape behavior was developed and demonstrated. The purpose of this work was to develop methodologies for screening water quality appropriate to the goals of the watershed paradigm. A model of bivalve gape behavior based on prediction of behavior using autoregressive techniques was the foundation of the bivalve biomonitoring system. Current technology was used in developing the system to provide bivalve gape state data in a continuous real-time manner. A laboratory version of the system, including data collection and analysis hardware and software, was developed for use as a toxicological assay for determination of effective concentrations of toxicant(s) or other types of stress on bivalve gape behavior. Corbicula fluminea was monitored and challenged with copper, zinc, and chlorpyrifos using the system. Effective concentrations of 176±23µg/L copper, 768±412µg/L zinc, and 68µg/L chlorpyrifos were observed using a natural water with high dissolved organic carbon concentrations. A rugged field version of the bivalve biomonitoring system was developed and deployed in two locations. The field systems were fitted with a photovoltaic array, a single board computer, and a CDPD telemetry modem for robust remote operation. Data were telemetered at a time relevant rate of once every ten minutes. One unit was deployed in Lake Lewisville, Denton County, TX in February 2000. Data were telemetered and archived at a 92% success rate. Bivalve gape data demonstrated significant behavioral deviations on average 5 times per month. A second unit was deployed in Pecan Creek, Denton, TX in June 2001. Data from this site were telemetered and archived at a 96% success rate. Over the months of June-August 2001, 16 significant behavioral deviations were observed, 63% of which were correlated with changes in physical/chemical parameters. This work demonstrated the relative sensitivity of bivalve gape as a toxicological endpoint …
Ecological Enhancement of Timber Growth: Applying Compost to Loblolly Pine Plantations
This study explored the application of compost onto a small loblolly pine tree forest in northeast Texas. Its purpose was to determine if the application of various amounts of compost would provide for accelerated rates of growth for the trees. Soil parameters were also monitored. A total of 270 trees were planted and studied in a northeast Texas forest ecosystem. Compost rates of 5, 25, and 50 tons per acre with either soil or compost backfill were utilized and compared to a control without compost. Nonparametric and parametric ANOVA and Chi-Square tests were utilized. The results indicated that greater application rates retained greater moisture and higher pH levels in the soil. Compost applications also yielded a greater survival rate as well as larger tree height and diameter when compared to the control. The 25 ton/acre application backfilled in native soil achieved the greatest average in height and diameter when compared to the averages for the control plot. Greater growth differences for the 25S application can be attributed to additional nutrients coupled with a stable pH consistent with native soil acidity.
Influence of Sediment Exposure and Water Depth on Torpedograss Invasion of Lake Okeechobee, Florida
Torpedograss (Panicum repens) was first observed in Lake Okeechobee in the 1970s and appears to have displaced an estimated 6,400 ha of native plants, such as spikerush (Eleocharis cellulosa), where inundation depths are often less than 50 cm. Two series of studies evaluated substrate exposure and water depth influences on torpedograss establishment and competitiveness. Results revealed that fragments remain buoyant for extended periods and so facilitate dispersal. Once anchored to exposed substrate fragments can readily root and establish. Subsequently, torpedograss thrives when subjected to inundations to 75 cm and survives prolonged exposure to depths greater than 1 m. These findings suggest that fluctuating water levels contribute to torpedograss dispersal and colonization patterns and that low water levels increase marsh area susceptible to invasion. The competition study found that spikerush grown in monoculture produces significantly more biomass when continually inundated to shallow depths (10 to 20 cm) than when subjected to drier conditions (-25 cm) or greater inundations (80 cm). In contrast, torpedograss establishes more readily on exposed substrate (-25 to 0 cm) compared to inundate substrates. During the first growing season biomass production increases as substrate exposure interval increases. However, during the second year, established torpedograss produces more biomass when grown on intermittently wet (0 cm) compared to permanently dry (-25 cm) or intermittently inundated (10 cm) substrates. No difference in production was observed between substrates permanently inundated (10 cm) and any other regime tested. During the first two years of torpedograss invasion, regardless of treatment, spikerush suppresses invasion and torpedograss had little effect on established spikerush, indicating that spikerush-dominated areas are capable of resisting torpedograss invasion. Even so, disturbances that might cause mortality of long hydroperiod species, such as spikerush, may create open gaps in the native vegetation and thus facilitate torpedograss establishment and expansion.
Modeling of Land Use Change Effects on Storm Water Quantity and Quality in the City of Carrollton and the North Texas Area
Development and population are rapidly increasing in urbanizing areas of North Texas and so is the need to understand changes in storm water runoff flow and its contamination by nutrients, sediment, pesticides and other toxicants. This study contributes to this understanding and has two primary components: first, development of a graphical user interface for a geographic information system and storm water management database, and second, performing a two-scale hydrological modeling approach (the US Corp of Engineers HEC-HMS model and the US Environmental Protection Agency SWMM model). Both primary components are used together as a toolkit to support the storm water management program of the City of Carrollton, located in North Texas. By focusing limited city resources, the toolkit helps storm water managers in the process of compliance with federal regulations, especially the National Pollution Discharge Elimination System permit, and provides guidance for reporting, planning and investigation. A planning example was conducted by modeling potential changes in storm water quality due to projections of land use based on the City of Carrollton's Comprehensive Plan. An additional component of this study is the evaluation of future changes in surface water quantity and quality in the North Central Texas area, specifically in a rural but rapidly urbanizing subbasin area of the greater Lake Lewisville watershed. This was accomplished using the US Corp of Engineers HEC-HMS hydrological model. Precipitation scenarios were derived from years of historically high, medium, and low annual precipitation. Development scenarios were derived from current land use in the Lake Lewisville sub basin, current land use in the city of Carrollton, and from Markov projections based on recent land use change calculated from satellite images of 1988 and 1999. This information is useful for future land use planning and management of water resources in North Texas.
On-Road Remote Sensing of Motor Vehicle Emissions: Associations between Exhaust Pollutant Levels and Vehicle Parameters for Arizona, California, Colorado, Illinois, Texas, and Utah
On-road remote sensing has the ability to operate in real-time, and under real world conditions, making it an ideal candidate for detecting gross polluters on major freeways and thoroughfares. In this study, remote sensing was employed to detect carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxide (NO). On-road remote sensing data taken from measurements performed in six states, (Arizona, California, Colorado, Illinois, Texas, and Utah) were cleaned and analyzed. Data mining and exploration were first undertaken in order to search for relationships among variables such as make, year, engine type, vehicle weight, and location. Descriptive statistics were obtained for the three pollutants of interest. The data were found to have non-normal distributions. Applied transformations were ineffective, and nonparametric tests were applied. Due to the extremely large sample size of the dataset (508,617 records), nonparametric tests resulted in "p" values that demonstrated "significance." The general linear model was selected due to its ability to handle data with non-normal distributions. The general linear model was run on each pollutant with output producing descriptive statistics, profile plots, between-subjects effects, and estimated marginal means. Due to insufficient data within certain cells, results were not obtained for gross vehicle weight and engine type. The "year" variable was not directly analyzed in the GLM because "year" was employed in a weighted least squares transformation. "Year" was found to be a source of heteroscedasticity; and therefore, the basis of a least-squares transformation. Grouped-years were analyzed using medians, and the results were displayed graphically. Based on the GLM results and descriptives, Japanese vehicles typically had the lowest CO, HC, and NO emissions, while American vehicles ranked high for the three. Illinois, ranked lowest for CO, while Texas ranked highest. Illinois and Colorado were lowest for HC emissions, while Utah and California were highest. For NO, Colorado ranked highest …
Phosphorus Retention and Fractionation in Masonry Sand and Light Weight Expanded Shale Used as Substrate in a Subsurface Flow Wetland
Constructed wetlands are considered an inefficient technology for long-term phosphorus (P) removal. The P retention effectiveness of subsurface wetlands can be improved by using appropriate substrates. The objectives of this study were to: (i) use sorption isotherms to estimate the P sorption capacity of the two materials, masonry sand and light weight expanded shale; (ii) describe dissolved P removal in small (2.7 m3) subsurface flow wetlands; (iii) quantify the forms of P retained by the substrates in the pilot cells; and (iv) use resulting data to assess the technical and economic feasibility of the most promising system to remove P. The P sorption capacity of masonry sand and expanded shale, as determined with Langmuir isotherms, was 60 mg/kg and 971 mg/kg respectively. In the pilot cells receiving secondarily treated wastewater, cells containing expanded shale retained a greater proportion of the incoming P (50.8 percent) than cells containing masonry sand (14.5 percent). After a year of operation, samples were analyzed for total P (TP) and total inorganic P (TIP). Subsamples were fractionated into labile-P, Fe+Al-bound P, humic-P, Ca+Mg-bound P, and residual-P. Means and standard deviations of TP retained by the expanded shale and masonry sand were 349 + 169 and 11.9 + 18.6 mg/kg respectively. The largest forms of P retained by the expanded shale pilot cells were Fe+Al- bound P (108 mg/kg), followed by labile-P (46.7 mg/kg) and humic-P (39.8). Increases in the P forms of masonry sand were greatest in labile-P (7.5 mg/kg). The cost of an expanded shale wetland is within the range of costs conventional technologies for P removal. Accurate cost comparisons are dependent upon expansion capacity of the system under consideration. Materials with a high P sorption capacity also have potential for enhancing P removal in other constructed wetland applications such as stormwater wetlands and wetlands …
Removal of selected water disinfection byproducts, and MTBE in batch and continuous flow systems using alternative sorbents.
A study was conducted to evaluate the sorption characteristics of six disinfection byproducts (DBPs) on four sorbents. To investigate sorption of volatile organic compounds (VOCs), specially designed experimental batch and continuous flow modules were developed. The investigated compounds included: chloroform, 1,2-dichloroethane (DCE), trichloroethylene (TCE), bromodichloromethane (BDCM), methyl tertiary butyl ether (MTBE), bromate and bromide ions. Sorbents used included light weight aggregate (LWA), an inorganic porous material with unique surface characteristics, Amberlite® XAD-16, a weakly basic anion exchange resin, Amberjet®, a strongly basic anion exchange resin, and granular activated carbon (GAC). Batch experiments were conducted on spiked Milli-Q® and lake water matrices. Results indicate considerable sorption of TCE (68.9%), slight sorption of bromate ions (19%) and no appreciable sorption for the other test compounds on LWA. The sorption of TCE increased to 75.3% in experiments utilizing smaller LWA particle size. LWA could be a viable medium for removal of TCE from contaminated surface or groundwater sites. Amberlite® was found unsuitable for use due to its physical characteristics, and its inability to efficiently remove any of the test compounds. Amberjet® showed an excellent ability to remove the inorganic anions (>99%), and BDCM (96.9%) from aqueous solutions but with considerable elevation of pH. Continuous flow experiments evaluated GAC and Amberjet® with spiked Milli-Q® and tap water matrices. The tested organic compounds were sorbed in the order of their hydrophobicity. Slight elevation of pH was observed during continuous flow experiments, making Amberjet® a viable option for removal of BDCM, bromate and bromide ions from water. The continuous flow experiments showed that GAC is an excellent medium for removal of the tested VOCs and bromate ion. Each of the test compounds showed different breakthrough and saturation points. The unique design of the continuous flow apparatus used in the study proved to be highly beneficial to …
Riparian Forest Width and the Avian Community in a Greenbelt Corridor Setting
The forest avian community of the Ray Roberts Greenbelt (Denton Co., Texas) was characterized for two years using point count station sampling, from fall 1998 to summer 2000. Richness data for both breeding seasons were correlated with two-spatial metrics: width of the riparian forest and distance to the nearest edge. There were significant correlations between forest interior species richness and both spatial metrics, for both breeding seasons. Based on these data, a minimum riparian forest width threshold of 400-meters is suggested to provide habitat for forest interior species, which have lost considerable habitat through forest fragmentation. Partners in Flight breeding bird priority concern scores were used to create a habitat priority index for the Trinity River bottomland hardwood forest system
Back to Top of Screen