You limited your search to:

  Partner: UNT Libraries
 Department: Department of Chemistry
 Decade: 2000-2009
 Language: English
 Collection: UNT Theses and Dissertations
Adherence/Diffusion Barrier Layers for Copper Metallization: Amorphous Carbon:Silicon Polymerized Films

Adherence/Diffusion Barrier Layers for Copper Metallization: Amorphous Carbon:Silicon Polymerized Films

Date: May 2004
Creator: Pritchett, Merry
Description: Semiconductor circuitry feature miniaturization continues in response to Moore 's Law pushing the limits of aluminum and forcing the transition to Cu due to its lower resistivity and electromigration. Copper diffuses into silicon dioxide under thermal and electrical stresses, requiring the use of barriers to inhibit diffusion, adding to the insulator thickness and delay time, or replacement of SiO2 with new insulator materials that can inhibit diffusion while enabling Cu wetting. This study proposes modified amorphous silicon carbon hydrogen (a-Si:C:H) films as possible diffusion barriers and replacements for SiO2 between metal levels, interlevel dielectric (ILD), or between metal lines (IMD), based upon the diffusion inhibition of previous a-Si:C:H species expected lower dielectric constants, acceptable thermal conductivity. Vinyltrimethylsilane (VTMS) precursor was condensed on a titanium substrate at 90 K and bombarded with electron beams to induce crosslinking and form polymerized a-Si:C:H films. Modifications of the films with hydroxyl and nitrogen was accomplished by dosing the condensed VTMS with water or ammonia before electron bombardment producing a-Si:C:H/OH and a-Si:C:H/N and a-Si:C:H/OH/N polymerized films in expectation of developing films that would inhibit copper diffusion and promote Cu adherence, wetting, on the film surface. X-ray Photoelectron Spectroscopy was used to characterize Cu metallization of ...
Contributing Partner: UNT Libraries
An Analysis of the Effectiveness of Computer Assisted Instruction in General Chemistry at an Urban University.

An Analysis of the Effectiveness of Computer Assisted Instruction in General Chemistry at an Urban University.

Date: May 2002
Creator: McGuffey, Angela
Description: The science-major General Chemistry sequence offered at the University of Houston has been investigated with respect to the effectiveness of recent incorporation of various levels of computer technology. As part of this investigation, questionnaire responses, student evaluations and grade averages and distributions from up to the last ten years have been analyzed and compared. Increased use of web-based material is both popular and effective, particularly with respect to providing extra information and supplemental questions. Instructor contact via e-mail is also well-received. Both uses of technology should be encouraged. In contrast, electronic classroom presentation is less popular. While initial use may lead to improved grades and retention, these levels decrease quickly, possibly due to a reduction in instructor spontaneity.
Contributing Partner: UNT Libraries
ANTI Preference of the Pyramidalized Radical Center to the Two Fluorines in Difluoro Cyclic Compounds.

ANTI Preference of the Pyramidalized Radical Center to the Two Fluorines in Difluoro Cyclic Compounds.

Date: May 2008
Creator: Tanna, Jigisha
Description: An extensive study of disubstituted cycloalkanes like CnH2n where n=3,4,5 and 6 using DFT((U)B3LYP/6-31G(d) and 6-311+G(2df,2p)) calculations is presented focusing on the effect of pyramidalization of the radical center. A potential energy surface (PES) analysis shows that the radical prefers to pyramidalize anti to the two cis fluorines in the disubstituted cycloalkanes. The degree of pyramidalization for 1,2-difluorocyclopropyl radical is 43.9o away from the cis fluorines whereas for 1,3-difluorocyclobutyl radical, 1,3-difluorocyclopentyl radical and 1,3-difluorocyclohexyl radical is 3.8o, 5.4o and 14.5o respectively away from the cis fluorines. The importance of this pyramidality effect in these compounds is discussed in context with the carbon-hydrogen bond dissociation energies (BDE's) because the preference of the radical centers to pyramidalize anti to the fluorines affects the bond dissociation energy. Importance of steric effect and unfavorable electronic interactions have been extensively explored in planar permethylated cyclobutadiene (Me4CBD) and cyclooctatetraene (Me8COT) using ((U)B3LYP/6-31G(d) and 6-311+G(2df,2p)) calculations. It is thought that steric interactions dominate electronic interactions in Me8COT, while this works opposite in case of Me4CBT. Instead, in Me4CBD the number of unfavorable electronic interactions between π bonds and out-of-plane hydrogens plays the dominant role in determining the relative energies. Interactions between the π bonds of CBD and ...
Contributing Partner: UNT Libraries
Applications of Nanomanipulation Coupled to Nanospray Mass Spectrometry in Trace Fiber Analysis and Cellular Lipid Analysis.

Applications of Nanomanipulation Coupled to Nanospray Mass Spectrometry in Trace Fiber Analysis and Cellular Lipid Analysis.

Date: December 2008
Creator: Ledbetter, Nicole
Description: The novel instrumentation of nanomanipulation coupled to nanospray mass spectrometry and its applications are presented. The nanomanipulator has the resolution of 10nm step sizes allowing for specific fine movement used to probe and characterize objects of interest. Nanospray mass spectrometry only needs a minimum sample volume of 300nl and a minimum sample size of 300attograms to analyze an analyte making it the ideal instrument to couple to nanomanipulation. The nanomanipulator is mounted to an inverted microscope and consists of 4 nano-positioners; these nano-positioners hold end-effectors and other tools used for manipulation. This original coupling has been used to enhance the current abilities of cellular probing and trace fiber analysis. Experiments have been performed to demonstrate the functionality of this instrument and its capabilities. Histidine and caffeine have been sampled directly from single fibers and analyzed. Lipid bodies from cotton seeds have been sampled indirectly and analyzed. The few applications demonstrated are only the beginning of nanomanipulation coupled to nanospray mass spectrometry and the possible applications are numerous especially with the ability to design and fabricate new end-effectors with unique abilities. Future study will be done to further the applications in direct cellular probing including toxicology studies and organelle analysis of ...
Contributing Partner: UNT Libraries
Baeyer-Villiger Oxidation of 1,7- & 1,9-dibromopentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione

Baeyer-Villiger Oxidation of 1,7- & 1,9-dibromopentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione

Access: Use of this item is restricted to the UNT Community.
Date: May 2004
Creator: Akinola, Adeniyi O.
Description: Baeyer-Villiger oxidation of 1,9-dibromopentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione (1,9-dibromo-PCU-8,11-dione) was performed by using an excess amount of m-chloroperbenzoic acid (3 equivalents) and resulted in the formation of the corresponding monolactone. The reaction would not proceed to the dilactone stage. The structure of the reaction product was established unequivocally via single crystal X-ray diffraction. Baeyer-Villiger oxidation of 1,9-dibromo-PCU-8,11-dione using ceric ammonium nitrate (CAN) was also performed and afforded a mixture of lactones. Only one of these lactones, which also contained an alkene functionality, could be isolated and characterized. 1,7-dibromo-PCU-8,11-dione was also reacted with CAN, yielding the mono-lactone, which has also been characterized.
Contributing Partner: UNT Libraries
Chemistry, Detection, and Control of Metals during Silicon Processing

Chemistry, Detection, and Control of Metals during Silicon Processing

Date: May 2005
Creator: Hurd, Trace Q.
Description: This dissertation focuses on the chemistry, detection, and control of metals and metal contaminants during manufacturing of integrated circuits (ICs) on silicon wafers. Chapter 1 begins with an overview of IC manufacturing, including discussion of the common aqueous cleaning solutions, metallization processes, and analytical techniques that will be investigated in subsequent chapters. Chapter 2 covers initial investigations into the chemistry of the SC2 clean - a mixture of HCl, H2O2, and DI water - especially on the behavior of H2O2 in this solution and the impact of HCl concentration on metal removal from particle addition to silicon oxide surfaces. Chapter 3 includes a more generalized investigation of the chemistry of metal ions in solution and how they react with the silicon oxide surfaces they are brought into contact with, concluding with illumination of the fundamental chemical principles that govern their behavior. Chapter 4 shows how metal contaminants behave on silicon wafers when subjected to the high temperature (≥ 800 °C) thermal cycles that are encountered in IC manufacturing. It demonstrates that knowledge of some fundamental thermodynamic properties of the metals allow accurate prediction of what will happen to a metal during these processes. Chapter 5 covers a very different but ...
Contributing Partner: UNT Libraries
Comparison of Homework Systems (Four Web-Based) used in First-Semester General Chemistry

Comparison of Homework Systems (Four Web-Based) used in First-Semester General Chemistry

Date: May 2009
Creator: Belland, Joshua
Description: Web-based homework systems are becoming more common in general chemistry as instructors face ever-increasing enrollment. Yet providing meaningful feedback on assignments remains of the utmost importance. Chemistry instructors consider completion of homework integral to students' success in chemistry, yet only a few studies have compared the use of Web-based systems to the traditional paper-and-pencil homework within general chemistry. This study compares the traditional homework system to four different Web-based systems. Data from eight, semester classes consisting of a diagnostic pre-test, final semester grades, and the number of successful and unsuccessful students are analyzed. Statistically significant results suggest a chemistry instructor should carefully consider options when selecting a homework system.
Contributing Partner: UNT Libraries
A Computational Investigation of the Photophysical, Electronic and Bonding Properties of Exciplex-Forming Van der Waals Systems

A Computational Investigation of the Photophysical, Electronic and Bonding Properties of Exciplex-Forming Van der Waals Systems

Date: December 2007
Creator: Sinha, Pankaj
Description: Calculations were performed on transition-metal complexes to (1) extrapolate the structure and bonding of the ground and phosphorescent states (2) determine the luminescence energies and (3) assist in difficult assignment of luminescent transitions. In the [Pt(SCN)4]2- complex, calculations determined that the major excited-state distortion is derived from a b2g bending mode rather than from the a1g symmetric stretching mode previously reported in the literature. Tuning of excimer formation was explained in the [Au(SCN)2]22- by interactions with the counterion. Weak bonding interactions and luminescent transitions were explained by calculation of Hg dimers, excimers and exciplexes formed with noble gases.
Contributing Partner: UNT Libraries
Computational Studies of Bonding and Phosphorescent Properties of Group 12 Oligomers and Extended Excimers.

Computational Studies of Bonding and Phosphorescent Properties of Group 12 Oligomers and Extended Excimers.

Date: August 2008
Creator: Determan, John J.
Description: Density functional (ca, BLYP, BPW91, B3LYP and B3PW91), MP2 and CCSD(T) methods in combination with LANL2DZ or cc-pVxZ-PP (where x=D(double), T(triple) Q(quadruple), and 5(quintuple)) basis sets have been employed in computing electronic transition energies of zinc and cadmium monomers. CCSD(T)/aug-cc-pV5Z-PP combination finds values that are 150 cm-1 from the experimental value for the zinc monomer and 240 cm-1 remove from the cadmium monomer excitation experimental value. These method/basis set combinations are also used to find spectroscopic values (re, De, we, wexe, Be , and Te) that rival experimental values for dimers and excimers. Examples of this can be seen with the CCSD(T)/aug-cc-pV5Z-PP combination phosphorescent emission results. The values found are within 120 cm-1 of the zinc emission energy and 290 cm-1 of the cadmium emission energy. While this combination rigorously models spectroscopic constants for monomers, dimers, and excimers, it does not efficiently model these constants for larger clusters with available modern computational resources. It is important to show spectroscopic trends (bonding, phosphorescent excitation and emissions) as clusters increase as the monomer and dimer emission energies do not model solid state metallophilic interactions and phosphorescence. The MP2/LANL2DZ combinations show qualitative cooperative bonding trends in group oligomers and extended excimers as size ...
Contributing Partner: UNT Libraries
Computational Studies of Coordinatively Unsaturated Transition Metal Complexes

Computational Studies of Coordinatively Unsaturated Transition Metal Complexes

Date: December 2006
Creator: Vaddadi, Sridhar
Description: In this research the validity of various computational techniques has been determined and applied the appropriate techniques to investigate and propose a good catalytic system for C-H bond activation and functionalization. Methane being least reactive and major component of natural gas, its activation and conversion to functionalized products is of great scientific and economic interest in pure and applied chemistry. Thus C-H activation followed by C-C/C-X functionalization became crux of the synthesis. DFT (density functional theory) methods are well suited to determine the thermodynamic as well as kinetic factors of a reaction. The obtained results are helpful to industrial catalysis and experimental chemistry with additional information: since C-X (X = halogens) bond cleavage is important in many metal catalyzed organic syntheses, the results obtained in this research helps in determining the selectivity (kinetic or thermodynamic) advantage. When C-P bond activation is considered, results from chapter 3 indicated that C-X activation barrier is lower than C-H activation barrier. The results obtained from DFT calculations not only gave a good support to the experimental results and verified the experimentally demonstrated Ni-atom transfer mechanism from Ni=E (E = CH2, NH, PH) activating complex to ethylene to form three-membered ring products but also validated ...
Contributing Partner: UNT Libraries
Computational Studies on Group 14 Elements (C, Si and Ge) in Organometallic and Biological Compounds.

Computational Studies on Group 14 Elements (C, Si and Ge) in Organometallic and Biological Compounds.

Date: May 2007
Creator: Yu, Liwen
Description: A series of computational studies were carried out on Group 14 (C, Si and Ge) elements in organometallic and biological compounds. Theoretical studies on classical and H-bridged A3H3+ (A=C, Si and Ge) as p ligands with different organometallic fragments at B3LYP and B3P86 level reveal a reverse charge transfer from ligand to metal in Si and Ge complexes whereas in C complexes there is a small charge transfer from metal to ligand. The H-bridged complexes are more stable than the complexes based on Si3H3+ and Ge3H3+ ligands with terminal hydrogens. The stability of the bridged systems increases from Si to Ge. Corrective scale factors for computed harmonic CºO vibrational frequencies for 31 organometallic complexes have been determined at the HF and B3LYP levels. The scaled B3LYP frequencies exhibit a greater reliability than do HF frequencies. Experimental data have shown that Si/Ge-substituted decapeptides are advantageous over their C analog in vitro and in vivo studies in modern hormone therapy. A computational investigation was carried out on the synthesized decapeptides focusing on position 5 containing Si and Ge. The results have shown that there are some differences in C, Si and Ge-containing analogs. However, further investigations are needed to elucidate the observed ...
Contributing Partner: UNT Libraries
A Computational Study on 18+δ Organometallics

A Computational Study on 18+δ Organometallics

Date: May 2002
Creator: Yu, Liwen
Description: The B3LYP density functional has been used to calculate properties of organometallic complexes of Co(CO)3 and ReBr(CO)3, with the chelating ligand 2,3-bisphosphinomaleic anhydride, in 19- and 18-electron forms. The SBKJC-21G effective core potential and associated basis set was used for metals (Co/Re) and the 6-31G* basis set was used for all other elements. The differences of bond angles, bond distances, natural atomic charges and IR vibrational frequencies were compared with the available experimental parameters. The differences between the 19- and 18-electron systems have been analyzed. The results reveal that the 19th electron is mostly distributed over the ligand of 2,3-bisphosphinomaleic anhydride, although partially localized onto the metal fragment in 1 and 2*. Two different methods, IR-frequencies and natural atomic charges, were used to determine the value of δ. Present computed values of δ are compared with available experimental values, and predictions are made for unknown complexes.
Contributing Partner: UNT Libraries
Copper Electrodeposition on Iridium, Ruthenium and Its Conductive Oxide Substrate

Copper Electrodeposition on Iridium, Ruthenium and Its Conductive Oxide Substrate

Date: December 2003
Creator: Huang, Long
Description: The aim of this thesis was to investigate the physical and electrochemical properties of sub monolayer and monolayer of copper deposition on the polycrystalline iridium, ruthenium and its conductive oxide. The electrochemical methods cyclic voltammetry (CV) and chronocoulometry were used to study the under potential deposition. The electrochemical methods to oxidize the ruthenium metal are presented, and the electrochemical properties of the oxide ruthenium are studied. The full range of CV is presented in this thesis, and the distances between the stripping bulk peak and stripping UPD peak in various concentration of CuSO4 on iridium, ruthenium and its conductive oxide are shown, which yields thermodynamic data on relative difference of bonding strength between Cu-Ru/Ir atoms and Cu-Cu atoms. The monolayer of UPD on ruthenium is about 0.5mL, and on oxidized ruthenium is around 0.9mL to 1.0mL. The conductive oxide ruthenium presents the similar properties of ruthenium metal. The pH effect of stripping bulk peak and stripping UPD peak of copper deposition on ruthenium and oxide ruthenium was investigated. The stripping UPD peak and stripping bulk peak disappeared after the pH ≥ 3 on oxidized ruthenium electrode, and a new peak appeared, which means the condition of pH is very important. ...
Contributing Partner: UNT Libraries
Cu Electrodeposition on Ru with a Chemisorbed Iodine Surface Layer.

Cu Electrodeposition on Ru with a Chemisorbed Iodine Surface Layer.

Access: Use of this item is restricted to the UNT Community.
Date: August 2005
Creator: Lei, Jipu
Description: An iodine surface layer has been prepared on Ru(poly) and Ru(0001) electrodes by exposure to iodine vapor in UHV and polarizing in a 0.1 M HClO4/0.005 M KI solution, respectively. A saturation coverage of I on a Ru(poly) electrode passivates the Ru surface against significant hydroxide, chemisorbed oxygen or oxide formation during exposure to water vapor over an electrochemical cell in a UHV-electrochemistry transfer system. Immersion of I-Ru(poly) results in greater hydroxide and chemisorbed oxygen formation than water vapor exposure, but an inhibition of surface oxide formation relative that of the unmodified Ru(poly) surface is still observed. Studies with combined electrochemical and XPS techniques show that the iodine surface adlayer remained on top of the surface after cycles of overpotential electrodeposition/dissolution of copper on both Ru(poly) and Ru(0001) electrodes. These results indicate the potential bifunctionality of iodine layer to both passivate the Ru surface in the microelectronic processing and to act as a surfactant for copper electrodeposition. The electrodeposition of Cu on Ru(0001) or polycrystalline Ru was studied using XPS with combined ultrahigh vacuum/electrochemistry methodology (UHV-EC) in 0.1 M HClO4 with Cu(ClO4)2 concentrations ranging from 0.005 M to 0.0005 M, and on polycrystalline Ru in a 0.05M H2SO4/0.005 M CuSO4/0.001 ...
Contributing Partner: UNT Libraries
Design and Synthesis of Novel Cage-Functionalized Crown Ethers: A New Class of Ag Complexants.

Design and Synthesis of Novel Cage-Functionalized Crown Ethers: A New Class of Ag Complexants.

Date: August 2003
Creator: Lai, Huiguo
Description: Three different types of cage crown ethers have been prepared and their complexation properties with Ag(I) have been studied. Atomic absorption, fluorescence quenching, and UV absorption have been used to study the interaction between the hosts (cage crown ethers) and guests (Ag+). For the cage-annulated crown ethers that contain aromatic rings, cation-π and π-π interactions may contribute significantly to the overall complexation ability of the host system. Piperazine groups may cooperate, and the piperazine nitrogen atoms provide unshared electrons, which may form a complex with Ag+. In addition, relatively soft donor atoms (e.g., Br) are well-suited for complexation with Ag+, which is a softer Lewis acid than alkali metal cations.
Contributing Partner: UNT Libraries
Diffusion Barriers/Adhesion Promoters. Surface and Interfacial Studies of Copper and Copper-Aluminum Alloys

Diffusion Barriers/Adhesion Promoters. Surface and Interfacial Studies of Copper and Copper-Aluminum Alloys

Date: August 2000
Creator: Shepherd, Krupanand Solomon
Description: The focus of this research is to study the interaction between copper and the diffusion barrier/adhesion promoter. The behavior of copper sputter-deposited onto sputter-cleaned tantalum nitride is investigated. The data show that copper growth on tantalum nitride proceeds with the formation of 3-D islands, indicating poor adhesion characteristics between copper and Ta0.4N. Post-annealing experiments indicate that copper will diffuse into Ta0.4N at 800 K. Although the data suggests that Ta0.4N is effective in preventing copper diffusion, copper's inability to wet Ta0.4N will render this barrier ineffective. The interaction of copper with oxidized tantalum silicon nitride (O/TaSiN) is characterized. The data indicate that initial copper depositions result in the formation a conformal ionic layer followed by Cu(0) formation in subsequent depositions. Post-deposition annealing experiments performed indicate that although diffusion does not occur for temperatures less than 800 K, copper "de-wetting" occurs for temperatures above 500 K. These results indicate that in conditions where the substrate has been oxidized facile de-wetting of copper may occur. The behavior of a sputter-deposited Cu0.6Al0.4 film with SiO2 (Cu0.6Al0.4/SiO2) is investigated. The data indicate that aluminum segregates to the SiO2 interface and becomes oxidized. For copper coverages less than ~ 0.31 ML (based on a Cu/O ...
Contributing Partner: UNT Libraries
Diphosphine Ligand Activation Studies with Organotransition-Metal Compounds

Diphosphine Ligand Activation Studies with Organotransition-Metal Compounds

Access: Use of this item is restricted to the UNT Community.
Date: December 2000
Creator: Wang, Jiancheng
Description: Thermolysis of CoRu(CO)7(m -PPh2) (1) in refluxing 1,2-dichloroethane in the presence of the diphosphine ligands 2,3-bis(diphenylphosphino)maleic anhydride (bma) and 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) furnishes the new mixed-metal complexes CoRu(CO)4(μ -P-P)(μ -PPh2) [where P-P = bma (3); bpcd (6)], along with trace amounts of the known complex CoRu(CO)6(PPh3)(μ -PPh2) (4). The requisite pentacarbonyl intermediates CoRu(CO)5(μ -P-P)(μ -PPh2) [where P-P = bma (2); bpcd (5)] have been prepared by separate routes and studied for their conversion to CoRu(CO)4(μ -P-P)(μ -PPh2). The complexes 2/3 and 5/6 have been isolated and fully characterized in solution by IR and NMR spectroscopy. The kinetics for the conversion of 2→3 and of 5→6 were measured by IR spectroscopy in chlorobenzene solvent. On the basis of the first-order rate constants, CO inhibition, and the activation parameters, a mechanism involving dissociative CO loss as the rate-limiting step is proposed. The solid-state structure of CoRu(CO)4(μ -bma)(μ -PPh2) (3) reveals that the two PPh2 groups are bound to the ruthenium center while the maleic anhydride π bond is coordinated to the cobalt atom. Thermolysis of the cluster Ru3(CO)12 with the bis(phosphine)hydrazine ligand (MeO)2PN(Me)N(Me)P(OMe)2 (dmpdmh) in toluene at 75°C furnishes the known clusters Ru4(CO)12[μ -N(Me)N(Me)] (9) and Ru3(CO)11[P(OMe)3] (10), in addition to the new ...
Contributing Partner: UNT Libraries
Diphosphine Ligand Substitution in H4Ru4(CO)12: X-ray Diffraction Structures and Reactivity Studies of the Diphosphine Substituted Cluster Products

Diphosphine Ligand Substitution in H4Ru4(CO)12: X-ray Diffraction Structures and Reactivity Studies of the Diphosphine Substituted Cluster Products

Access: Use of this item is restricted to the UNT Community.
Date: December 2006
Creator: Kandala, Srikanth
Description: The tetraruthenium cluster H4Ru4(CO)12 has been studied for its reactivity with the unsaturated diphosphine ligands (Z)-Ph2PCH=CHPPh2, 4,5-bis (diphenylphosphino)-4-cyclopenten-1,3-dione, bis(diphenyphosphino)benzene and 1,8- bis(diphenyl phosphino)naphthalene under thermal, near-UV photolysis, and Me3NO-assisted activation. All three cluster activation methods promote loss of CO and furnish the anticipated substitution products that possess a chelating diphosphine ligand. Clusters 1, 2, 3 and 4 have been characterized in solution by IR and NMR spectroscopies, and these data are discussed with respect to the crystallographically determined structures for all new cluster compounds. The 31P NMR spectral data and the solid-state structures confirm the presence of a chelating diphosphine ligand in all four new clusters. Sealed NMR tubes containing clusters 1, 2, 3 and 4 were found to be exceeding stable towards near-UV light and temperatures up to ca. 100°C. The surprisingly robust behavior of the new clusters is contrasted with the related cluster Ru3(CO)10(bpcd) that undergoes fragmentation to the donor-acceptor compound Ru2(CO)6(bpcd) and the phosphido-bridged compound Ru2(CO)6 (µ-PPh2)[µ-C=C(PPh2)C(O)CH2C(O)] under mild conditions. The electrochemical properties have been investigated in the case of clusters 1 and 2 by cyclic voltammetry, and the findings are discussed with respect to the reported electrochemical data on the parent cluster H4Ru4(CO)12.
Contributing Partner: UNT Libraries
Effects of Web-based Instruction in High School Chemistry.

Effects of Web-based Instruction in High School Chemistry.

Access: Use of this item is restricted to the UNT Community.
Date: May 2003
Creator: Stratton, Eric W.
Description: The intent of this study is to identify correlations that might exist between Web-based instruction and higher assessment scores in secondary education. The study framework was held within the confines of a public high school chemistry classroom. Within this population there were students identified as gifted and talented (GT) as well as those without this designation. These two classifications were examined for statistically higher assessment scores using a two-tailed t-test. Results indicated that females outperformed males on pre- and post- instructional unit tests. All subgroups improved their logical-thinking skills and exhibited positive attitudes towards Web-based instruction. In general, Web-based instruction proved beneficial to improving classroom performance of all GT and non-GT groups as compared to traditional classroom instruction.
Contributing Partner: UNT Libraries
Electrochemical Deposition of Zinc-Nickel Alloys in Alkaline Solution for Increased Corrosion Resistance.

Electrochemical Deposition of Zinc-Nickel Alloys in Alkaline Solution for Increased Corrosion Resistance.

Access: Use of this item is restricted to the UNT Community.
Date: December 2009
Creator: Conrad, Heidi A.
Description: The optimal conditions for deposition of zinc-nickel alloys onto stainless steel discs in alkaline solutions have been examined. In the past cadmium has been used because it shows good corrosion protection, but other methods are being examined due to the high toxicity and environmental threats posed by its use. Zinc has been found to provide good corrosion resistance, but the corrosion resistance is greatly increased when alloyed with nickel. The concentration of nickel in the deposit has long been a debated issue, but for basic solutions a nickel concentration of 8-15% appears optimal. However, deposition of zinc-nickel alloys from acidic solutions has average nickel concentrations of 12-15%. Alkaline conditions give a more uniform deposition layer, or better metal distribution, thereby a better corrosion resistance. Although TEA (triethanolamine) is most commonly used to complex the metals in solution, in this work I examined TEA along with other complexing agents. Although alkaline solutions have been examined, most research has been done in pH ≥ 12 solutions. However, there has been some work performed in the pH 9.3-9.5 range. This work examines different ligands in a pH 9.3-9.4 range. Direct potential plating and pulse potential plating methods are examined for optimal platings. The ...
Contributing Partner: UNT Libraries
Electrochemical Study of Under-Potential Deposition Processes on Transition Metal Surfaces

Electrochemical Study of Under-Potential Deposition Processes on Transition Metal Surfaces

Date: August 2006
Creator: Flores Araujo, Sarah Cecilia
Description: Copper under-potential deposition (UPD) on iridium was studied due to important implications it presents to the semiconductor industry. Copper UPD allows controlled superfilling on sub-micrometer trenches; iridium has characteristics to prevent copper interconnect penetration into the surrounding dielectric. Copper UPD is not favored on iridium oxides but data shows copper over-potential deposition when lower oxidation state Ir oxide is formed. Effect of anions in solution on silver UPD at platinum (Pt) electrodes was studied with the electrochemical quartz crystal microbalance. Silver UPD forms about one monolayer in the three different electrolytes employed. When phosphoric acid is used, silver oxide growth is identified due to presence of low coverage hydrous oxide species at potentials prior to the monolayer oxide region oxide region.
Contributing Partner: UNT Libraries
Electrochemical Synthesis and Characterization of Inorganic Materials from Aqueous Solutions

Electrochemical Synthesis and Characterization of Inorganic Materials from Aqueous Solutions

Access: Use of this item is restricted to the UNT Community.
Date: December 2006
Creator: Yuan, Qiuhua
Description: The dissertation consists of the following three sections: 1. Hydroxyapatite (HA) coatings. In this work, we deposited HA precursor films from weak basic electrolytic solution (pH= 8-9) via an electrochemical approach; the deposits were changed into crystallite coatings of hydroxyapatite by sintering at specific temperatures (600-800 ºC). The formed coatings were mainly characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). XRD patterns show well-defined peaks of HA when sintered under vacuum conditions. FTIR measurements indicate the existence of hydroxyl groups, which were confirmed by the characteristic intensity of the stretching and bending bands at ~3575 and ~630 cm-1, respectively. The SEM shows an adhesive, crack free morphology for the double-layer coating surface of the samples sintered in a vacuum furnace. 2. Silver/polymer/clay nanocomposites. Silver nanoparticles were prepared in layered clay mineral (montmorillonite)/polymer (PVP: poly (vinyl pyrrolidone)) suspension by an electrochemical approach. The silver particles formed in the bulk suspension were stabilized by the PVP and partially exfoliated clay platelets, which acted as protective colloids to prevent coagulation of silver nanoparticles together. The synthesized silver nanoparticles/montmorillonite/PVP composite was characterized and identified by XRD, SEM, and TEM (transmission electron microscopy) measurements. 3. Ce-doped lead ...
Contributing Partner: UNT Libraries
Electrodeposition of adherent copper film on unmodified tungsten.

Electrodeposition of adherent copper film on unmodified tungsten.

Access: Use of this item is restricted to the UNT Community.
Date: May 2004
Creator: Wang, Chen
Description: Adherent Cu films were electrodeposited onto polycrystalline W foils from purged solutions of 0.05 M CuSO4 in H2SO4 supporting electrolyte and 0.025 M CuCO3∙Cu(OH)2 in 0.32 M H3BO3 and corresponding HBF4 supporting electrolyte, both at pH = 1. Films were deposited under constant potential conditions at voltages between -0.6 V and -0.2 V vs Ag/AgCl. All films produced by pulses of 10 s duration were visible to the eye, copper colored, and survived a crude test called "the Scotch tape test", which stick the scotch tape on the sample, then peel off the tape and see if the copper film peels off or not. Characterization by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray photon spectroscopy (XPS) confirmed the presence of metallic Cu, with apparent dendritic growth. No sulfur impurity was observable by XPS or EDX. Kinetics measurements indicate that the Cu nucleation process in the sulfuric bath is slower than in the borate bath. In both baths, nucleation kinetics do not correspond to either instantaneous or progressive nucleation. Films deposited from 0.05 M CuSO4/H2SO4 solution at pH > 1 at -0.2 V exhibited poor adhesion and decreased Cu reduction current. In both borate and sulfate baths, small ...
Contributing Partner: UNT Libraries
Electrodeposition of Copper on Ruthenium Oxides and Bimetallic Corrosion of Copper/Ruthenium in Polyphenolic Antioxidants

Electrodeposition of Copper on Ruthenium Oxides and Bimetallic Corrosion of Copper/Ruthenium in Polyphenolic Antioxidants

Date: August 2007
Creator: Venkataraman, Shyam S.
Description: Copper (Cu) electrodeposition on ruthenium (Ru) oxides was studied due to important implications in semiconductor industry. Ruthenium, proposed as the copper diffusion barrier/liner material, has higher oxygen affinity to form different oxides. Three different oxides (the native oxide, reversible oxide, and irreversible oxide) were studied. Native oxide can be formed on exposing Ru in atmosphere. The reversible and irreversible oxides can be formed by applying electrochemical potential. Investigation of Cu under potential deposition on these oxides indicates the similarity between native and reversible oxides by its nature of inhibiting Cu deposition. Irreversible oxide formed on Ru surface is rather conductive and interfacial binding between Cu and Ru is greatly enhanced. After deposition, bimetallic corrosion of Cu/Ru in different polyphenols was studied. Polyphenols are widely used as antioxidants in post chemical mechanical planarization (CMP). For this purpose, different trihydroxyl substituted benzenes were used as antioxidants. Ru, with its noble nature enhances bimetallic corrosion of Cu. Gallic acid (3,4,5 - trihydroxybenzoic acid) was chosen as model compound. A mechanism has been proposed and validity of the mechanism was checked with other antioxidants. Results show that understanding the chemical structure of antioxidants is necessary during its course of reaction with Cu.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 5 NEXT LAST