## You limited your search to:

**Access Rights:**Public

**Department:**Department of Physics

**Collection:**UNT Theses and Dissertations

### Effects of Discharge Tube Geometry on Plasma Ion Oscillations

**Date:**May 1975

**Creator:**Simmons, David Warren

**Description:**This study considers the effect, on plasma ion oscillations, of various lengths of discharge tubes as well as various cross sections of discharge tubes. Four different gases were used in generating the plasma. Gas pressure and discharge voltage and current were varied to obtain a large number of signals. A historical survey is given to familiarize the reader with the field. The experimental equipment and procedure used in obtaining data is given. An analysis of the data obtained is presented along with possible explanations for the observed phenomena. Suggestions for future study are made.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc663636/

### Effects of Dissipation on Propagation of Surface Electromagnetic and Acoustic Waves

**Date:**May 2012

**Creator:**Nagaraj, Nagaraj

**Description:**With the recent emergence of the field of metamaterials, the study of subwavelength propagation of plane waves and the dissipation of their energy either in the form of Joule losses in the case of electomagnetic waves or in the form of viscous dissipation in the case of acoustic waves in different interfaced media assumes great importance. with this motivation, I have worked on problems in two different areas, viz., plasmonics and surface acoustics. the first part (chapters 2 & 3) of the dissertation deals with the emerging field of plasmonics. Researchers have come up with various designs in an efort to fabricate efficient plasmonic waveguides capable of guiding plasmonic signals. However, the inherent dissipation in the form of Joule losses limits efficient usage of surface plasmon signal. a dielectric-metal-¬dielectric planar structure is one of the most practical plasmonic structures that can serve as an efficient waveguide to guide electromagnetic waves along the metal-dielectric boundary. I present here a theoretical study of propagation of surface plasmons along a symmetric dielectric-metal-dielectric structure and show how proper orientation of the optical axis of the anisotropic substrate enhances the propagation length. an equation for propagation length is derived in a wide range of frequencies. ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc115126/

### The Effects of Lead Placement and Sample Shape in the Measurement of Electrical Resistivity

**Date:**August 1970

**Creator:**Stephens, Anthony E.

**Description:**This thesis is a study of the effects of lead placement and sample shape in the measurement of electrical resistivity.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc131303/

### The Effects of Residual Gases on the Field Emission Properties of ZnO, GaN, ZnS Nanostructures, and the Effects of Light on the Resistivity of Graphene

**Date:**May 2014

**Creator:**Mo, Yudong

**Description:**In this dissertation, I present that at a vacuum of 3×10-7 Torr, residual O2, CO2, H2 and Ar exposure do not significantly degrade the field emission (FE) properties of ZnO nanorods, but N2 exposure significantly does. I propose that this could be due to the dissociation of N2 into atomic nitrogen species and the reaction of such species with ZnO. I also present the effects of O2, CO2, H2O, N2, H2, and Ar residual gas exposure on the FE properties of GaN and ZnS nanostructure. A brief review of growth of ZnO, GaN and ZnS is provided. In addition, Cs deposition on GaN nanostructures at ultra-high vacuum results in 30% decrease in turn-on voltage and 60% in work function. The improvement in FE properties could be due to a Cs-induced space-charge layer at the surface that reduces the barrier for FE and lowers the work function. I describe a new phenomenon, in which the resistivity of CVD-grown graphene increases to a higher saturated value under light exposure, and depends on the wavelength of the light—the shorter the wavelength, the higher the resistivity. First-principle calculations and theoretical analysis based on density functional theory show that (1) a water molecule close to ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc500202/

### Electrical Conduction Mechanisms in the Disordered Material System P-type Hydrogenated Amorphous Silicon

**Date:**December 2014

**Creator:**Shrestha, Kiran (Engineer)

**Description:**The electrical and optical properties of boron doped hydrogenated amorphous silicon thin films (a-Si) were investigated to determine the effect of boron and hydrogen incorporation on carrier transport. The a-Si thin films were grown by plasma enhanced chemical vapor deposition (PECVD) at various boron concentrations, hydrogen dilutions, and at differing growth temperatures. The temperature dependent conductivity generally follows the hopping conduction model. Above a critical temperature, the dominant conduction mechanism is Mott variable range hopping conductivity (M-VRH), where p = ¼, and the carrier hopping depends on energy. However, at lower temperatures, the coulomb interaction between charge carriers becomes important and Efros-Shklosvkii variable hopping (ES-VRH) conduction, where p=1/2, must be included to describe the total conductivity. To correlate changes in electrical conductivity to changes in the local crystalline order, the transverse optical (TO) and transverse acoustic (TA) modes of the Raman spectra were studied to relate changes in short- and mid-range order to the effects of growth temperature, boron, and hydrogen incorporation. With an increase of hydrogen and/or growth temperature, both short and mid-range order improve, whereas the addition of boron results in the degradation of short range order. It is seen that there is a direct correlation between the ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc700106/

### Electrical Conductivity in Thin Films

**Date:**May 1973

**Creator:**Meyer, Frederick Otto

**Description:**This thesis deals with electrical conductivity in thin films. Classical and quantum size effects in conductivity are discussed including some experimental evidence of quantum size effects. The component conductivity along the applied electric field of a thin film in a transverse magnetic field is developed in a density matrix method.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc164055/

### An Electro- Magneto-static Field for Confinement of Charged Particle Beams and Plasmas

**Date:**May 2014

**Creator:**Pacheco, Josè L.

**Description:**A system is presented that is capable of confining an ion beam or plasma within a region that is essentially free of applied fields. An Artificially Structured Boundary (ASB) produces a spatially periodic set of magnetic field cusps that provides charged particle confinement. Electrostatic plugging of the magnetic field cusps enhances confinement. An ASB that has a small spatial period, compared to the dimensions of a confined plasma, generates electro- magneto-static fields with a short range. An ASB-lined volume thus constructed creates an effectively field free region near its center. It is assumed that a non-neutral plasma confined within such a volume relaxes to a Maxwell-Boltzmann distribution. Space charge based confinement of a second species of charged particles is envisioned, where the second species is confined by the space charge of the first non-neutral plasma species. An electron plasma confined within an ASB-lined volume can potentially provide confinement of a positive ion beam or positive ion plasma. Experimental as well as computational results are presented in which a plasma or charged particle beam interact with the electro- magneto-static fields generated by an ASB. A theoretical model is analyzed and solved via self-consistent computational methods to determine the behavior and equilibrium ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc500001/

### Electron Density and Collision Frequency Studies Using a Resonant Microwave Cavity as a Probe

**Date:**May 1973

**Creator:**Freeman, Ronald Harold

**Description:**Electron densities and collision frequencies were obtained on a number of gases in a dc discharge at low pressures (0.70-2mm of Hg). These measurements were performed by microwave probing of a filament of the dc discharge placed coaxially in a resonant cavity operating in a TM₀₁₀ mode. The equipment and techniques for making the microwave measurements employing the resonant cavity are described. One of the main features of this investigation is the technique of differentiating the resonance signal of the loaded cavity in order to make accurate measurements of the resonant frequency and half-power point frequencies.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc279091/

### Electron Spin Resonance Absorption in Benzophenone Phenylhydrazone Negative Ion

**Date:**August 1969

**Creator:**Oral, Burhanettin

**Description:**This thesis reports an electron spin resonance absorption study of the hyperfine interaction between nuclei and a single "nearly-free" electron in dilute solutions of the benzophenone phenylhydrazone free radical in tetrahydrofuran.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc131161/

### Electron Transport in Bismuth at Liquid Helium Tempratures

**Date:**May 1964

**Creator:**Newell, James M.

**Description:**To obtain information on the band structure of bismuth, galvanomagnetic potentials were measured in a single crystal at liquid-helium and liquid-nitrogen temperatures. These measurements were analyzed for information on the different carriers, particularly for the existence of a high-mobility band of holes.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc130512/

### Electrostatic Mechanism of Emission Enhancement in Hybrid Metal-semiconductor Light-emitting Heterostructures

**Date:**May 2012

**Creator:**Llopis, Antonio

**Description:**III-V nitrides have been put to use in a variety of applications including laser diodes for modern DVD devices and for solid-state white lighting. Plasmonics has come to the foreground over the past decade as a means for increasing the internal quantum efficiency (IQE) of devices through resonant interaction with surface plasmons which exist at metal/dielectric interfaces. Increases in emission intensity of an order of magnitude have been previously reported using silver thin-films on InGaN/GaN MQWs. the dependence on resonant interaction between the plasmons and the light emitter limits the applications of plasmonics for light emission. This dissertation presents a new non-resonant mechanism based on electrostatic interaction of carriers with induced image charges in a nearby metallic nanoparticle. Enhancement similar in strength to that of plasmonics is observed, without the restrictions imposed upon resonant interactions. in this work we demonstrate several key features of this new interaction, including intensity-dependent saturation, increase in the radiative recombination lifetime, and strongly inhomogeneous light emission. We also present a model for the interaction based on the aforementioned image charge interactions. Also discussed are results of work done in the course of this research resulting in the development of a novel technique for strain measurement ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc115113/

### Emergence of Complexity from Synchronization and Cooperation

**Date:**May 2008

**Creator:**Geneston, Elvis L.

**Description:**The dynamical origin of complexity is an object of intense debate and, up to moment of writing this manuscript, no unified approach exists as to how it should be properly addressed. This research work adopts the perspective of complexity as characterized by the emergence of non-Poisson renewal processes. In particular I introduce two new complex system models, namely the two-state stochastic clocks and the integrate-and-fire stochastic neurons, and investigate its coupled dynamics in different network topologies. Based on the foundations of renewal theory, I show how complexity, as manifested by the occurrence of non-exponential distribution of events, emerges from the interaction of the units of the system. Conclusion is made on the work's applicability to explaining the dynamics of blinking nanocrystals, neuron interaction in the human brain, and synchronization processes in complex networks.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc6107/

### Energy Distribution of Sputtered Neutral Atoms from a Multilayer Target

**Date:**August 2000

**Creator:**Bigelow, Alan W.

**Description:**Energy distribution measurements of sputtered neutral particles contribute to the general knowledge of sputtering, a common technique for surface analysis. In this work emphasis was placed on the measurement of energy distribution of sputtered neutral atoms from different depths. The liquid Ga-In eutectic alloy as a sample target for this study was ideal due to an extreme concentration ratio gradient between the top two monolayers. In pursuing this study, the method of sputter-initiated resonance ionization spectroscopy (SIRIS) was utilized. SIRIS employs a pulsed ion beam to initiate sputtering and tunable dye lasers for resonance ionization. Observation of the energy distribution was achieved with a position-sensitive detector. The principle behind the detector's energy resolution is time of flight (TOF) spectroscopy. For this specific detector, programmed time intervals between the sputtering pulse at the target and the ionizing laser pulse provided information leading to the energy distribution of the secondary neutral particles. This experiment contributes data for energy distributions of sputtered neutral particles to the experimental database, required by theoretical models and computer simulations for the sputtering phenomenon.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc2657/

### Energy Losses of Protons Projected through a Plasma Due to Collisions with Electrons of the Plasma for a Variety of Non-Maxwellian Electron Velocity Distributions

**Date:**August 1961

**Creator:**Kregel, Mark Douglas

**Description:**The purpose of this thesis is to study energy losses suffered by protons in traversing a plasma through collision with the electrons of the plasma. For these electrons a variety of non-Maxwellian velocity distributions are assumed.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc130468/

### Enhancements of Mechanical, Thermal Stability, and Tribological Properties by Addition of Functionalized Reduced Graphene Oxide in Epoxy

**Date:**August 2014

**Creator:**Shah, Rakesh K.

**Description:**The effects of octadecylamine-functionalized reduced graphene oxide (FRGO) on the frictional and wear properties of diglycidylether of bisphenol-A (DGEBA) epoxy are studied using a pin-on-disk tribometer. It was observed that the addition of FRGO significantly improves the tribological, mechanical, and thermal properties of epoxy matrix. Graphene oxide (GO) was functionalized with octadecylamine (ODA), and then reduction of oxygen-containing functional groups was carried out using hydrazine monohydrate. The Raman and x-ray photoelectron spectroscopy studies confirm significant reduction in oxygen-containing functional groups and formation of ODA functionalized reduced GO. The nanocomposites are prepared by adding 0.1, 0.2, 0.5 and 1.0 wt % of FRGO to the epoxy. The addition of FRGO increases by more than an order of magnitude the sliding distance during which the dynamic friction is ≤ 0.1. After this distance, the friction sharply increases to the range of 0.4 - 0.5. We explain the increase in sliding distance during which the friction is low by formation of a transfer film from the nanocomposite to the counterface. The wear rates in the low and high friction regimes are approximately 1.5 x 10-4 mm3/N·m and 5.5 x 10-4 mm3/N·m, respectively. The nanocomposites exhibit a 74 % increase in Young’s modulus with ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc699889/

### An entropic approach to the analysis of time series.

**Date:**December 2001

**Creator:**Scafetta, Nicola

**Description:**Statistical analysis of time series. With compelling arguments we show that the Diffusion Entropy Analysis (DEA) is the only method of the literature of the Science of Complexity that correctly determines the scaling hidden within a time series reflecting a Complex Process. The time series is thought of as a source of fluctuations, and the DEA is based on the Shannon entropy of the diffusion process generated by these fluctuations. All traditional methods of scaling analysis, instead, are based on the variance of this diffusion process. The variance methods detect the real scaling only if the Gaussian assumption holds true. We call H the scaling exponent detected by the variance methods and d the real scaling exponent. If the time series is characterized by Fractional Brownian Motion, we have H¹d and the scaling can be safely determined, in this case, by using the variance methods. If, on the contrary, the time series is characterized, for example, by Lévy statistics, H ¹ d and the variance methods cannot be used to detect the true scaling. Lévy walk yields the relation d=1/(3-2H). In the case of Lévy flights, the variance diverges and the exponent H cannot be determined, whereas the scaling d ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3033/

### Evolution of Vacancy Supersaturations in MeV Si Implanted Silicon

**Date:**May 1999

**Creator:**Venezia, Vincent C.

**Description:**High-energy Si implantation into silicon creates a net defect distribution that is characterized by an excess of interstitials near the projected range and a simultaneous excess of vacancies closer to the surface. This defect distribution is due to the spatial separation between the distributions of interstitials and vacancies created by the forward momentum transferred from the implanted ion to the lattice atom. This dissertation investigates the evolution of the near-surface vacancy excess in MeV Si-implanted silicon both during implantation and post-implant annealing. Although previous investigations have identified a vacancy excess in MeV-implanted silicon, the investigations presented in this dissertation are unique in that they are designed to correlate the free-vacancy supersaturation with the vacancies in clusters. Free-vacancy (and interstitial) supersaturations were measured with Sb (B) dopant diffusion markers. Vacancies in clusters were profiled by Au labeling; a new technique based on the observation that Au atoms trap in the presence of open-volume defects. The experiments described in this dissertation are also unique in that they were designed to isolate the deep interstitial excess from interacting with the much shallower vacancy excess during post-implant thermal processing.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc277663/

### Experimental Determination of the Scattering Cross-section of Ogives and Prolate Spheroids at Microwave Frequencies

**Date:**1956

**Creator:**Rhoads, Wayne C.

**Description:**Because of the great difficulty of obtaining exact numerical values of cross-section, and because of the inherent uncertainties in interpreting and evaluating the approximate methods, accurate experimental cross-section data would be extremely useful to the radar engineer. It was with this purpose in mind that the present long-range research program in microwave scattering was undertaken. Of immediate interest were the scattering properties of the prolate spheroid, the ogive (formed by rotating the minor segment of a circle around the chord), and, for comparison, the long cylinder.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc107875/

### An Experimental Study of Collision Broadening of some Excited Rotational States of the Bending Vibration of Methyl Cyanide

**Date:**May 1993

**Creator:**Hajsaleh, Jamal Y. (Jamal Yousef)

**Description:**A double modulation microwave spectrometer is used to evaluate the linewidth parameters for some excited rotational components in the bending vibration v_8 of 13CH3 13C 15N and 13CH3C15N isotopomers of methyl cyanide. The linewidth parameters for self-broadening of the ΔJ=2←1 rotational components for the ground v_8 , 1v_8, and the 2v_8 vibrations were determined over a pressure range of 1 to 13 mtorr and at a temperature of 300 K. The double modulation technique is used to explore the high eighth derivative of the line shape profile of the spectral line. This technique proved to give good signal-to-noise ratios and enabled the recovery of weak signals. An experimental method is developed to correct for source modulation broadening. The tests of the ratios of the two inner peak's separation of the eighth derivative of the line showed that they were up to 95% similar to those for a Lorentzian line shape function. The line shapes were assumed to be Lorentzian for the theoretical analysis of the derivative profiles and comparisons were made between experiment and theory on this basis. Dipole moments for vibrationally excited states were calculated from linewidth parameters and show systematic decrease with the increase of excitation. Impact parameters ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc278369/

### Experimental Synchronization of Chaotic Attractors Using Control

**Date:**December 1994

**Creator:**Newell, Timothy C. (Timothy Charles)

**Description:**The focus of this thesis is to theoretically and experimentally investigate two new schemes of synchronizing chaotic attractors using chaotically operating diode resonators. The first method, called synchronization using control, is shown for the first time to experimentally synchronize dynamical systems. This method is an economical scheme which can be viably applied to low dimensional dynamical systems. The other, unidirectional coupling, is a straightforward means of synchronization which can be implemented in fast dynamical systems where timing is critical. Techniques developed in this work are of fundamental importance for future problems regarding high dimensional chaotic dynamical systems or arrays of mutually linked chaotically operating elements.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc278971/

### Exploration of hierarchical leadership and connectivity in neural networks in vitro.

**Date:**December 2008

**Creator:**Ham, Michael I.

**Description:**Living neural networks are capable of processing information much faster than a modern computer, despite running at significantly lower clock speeds. Therefore, understanding the mechanisms neural networks utilize is an issue of substantial importance. Neuronal interaction dynamics were studied using histiotypic networks growing on microelectrode arrays in vitro. Hierarchical relationships were explored using bursting (when many neurons fire in a short time frame) dynamics, pairwise neuronal activation, and information theoretic measures. Together, these methods reveal that global network activity results from ignition by a small group of burst leader neurons, which form a primary circuit that is responsible for initiating most network-wide burst events. Phase delays between leaders and followers reveal information about the nature of the connection between the two. Physical distance from a burst leader appears to be an important factor in follower response dynamics. Information theory reveals that mutual information between neuronal pairs is also a function of physical distance. Activation relationships in developing networks were studied and plating density was found to play an important role in network connectivity development. These measures provide unique views of network connectivity and hierarchical relationship in vitro which should be included in biologically meaningful models of neural networks.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc9775/

### Expulsion of Carriers from the Double-Barrier Quantum Well and Investigation of Its Spectral and Transport Consequences

**Date:**March 1992

**Creator:**Chyla, Wojciech Tadeusz

**Description:**In this work I investigate the expulsion of carriers from nanostructures using the double-barrier quantum well (DBQW) as an example and discuss manifestations of this effect in the spectrum of the DBQW in absence of bias, and in the tunneling current in presence of bias. Assuming equality of the Fermi energy in all regions of the considered system, I compute the relative density of carriers localized in the DBQW and conclude that a fraction of carriers is expelled from this nanostructure.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc277697/

### Extinguishment of a Low-pressure Argon Discharge by a Magnetic Field

**Date:**January 1964

**Creator:**Criswell, David Russell

**Description:**The experiment in this study involves the extinguishment of a low-pressure argon discharge by a magnetic field.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc108257/

### Field Dependence of Optical Properties in Quantum Well Heterostructures Within the Wentzel, Kramers, and Brillouin Approximation

**Date:**August 1989

**Creator:**Wallace, Andrew B.

**Description:**This dissertation is a theoretical treatment of the electric field dependence of optical properties such as Quantum Confined Stark (QCS) shifts, Photoluminescence Quenching (PLQ), and Excitonic Mixing in quantum well heterostructures. The reduced spatial dimensionality in heterostructures greatly enhances these optical properties, more than in three dimensional semiconductors. Charge presence in the quantum well from doping causes the potential to bend and deviate from the ideal square well potential. A potential bending that varies as the square of distance measured from the heterostructure interfaces is derived self-consistently. This potential is used to solve the time-independent Schrodinger equation for bound state energies and wave functions within the framework of the Wentzel, Kramers, and Brillouin (WKB) approximation. The theoretical results obtained from the WKB approximation are limited to wide gap semiconductors with large split off bands such as gallium arsenide-gallium aluminum arsenide and indium gallium arsenide—indium phosphide. Quantum wells with finite confinement heights give rise to an energy dependent WKB phase. External electric and magnetic fields are incorporated into the theory for two different geometries. For electric fields applied perpendicular to the heterostructure multilayers, QCS shifts and PLQ are found to be in excellent agreement with the WKB calculations. Orthogonality between electrons ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc330576/