Search Results

Avian Community Response to Riverby Ranch Restoration Reconstruction
Anthropogenic activities have caused many wildlife spices to decline in populations worldwide. The grassland bird communities are especially being impacted by these land use changes. Breeding success is closely tied to functional habitats for most grassland bird species in North Texas. Restoring these degraded habitats is an important component to aid in conserving wildlife biodiversity. We surveyed the bird population at Riverby Ranch Mitigation site by conducting point count sampling. This site consists of recently restored grassland, wetland, and forested habitat. This research was focused on conducting post restoration monitoring of the bird community in the early succession of the restored habitats. We set out to use the bird community as biomonitors to help assess if the restoration practices could be considered successful. We found that density estimates were more than double at the restored site when comparing to three different references sites under different management practices. This included an unrestored working ranch, a wildlife management area, and a conservation managed prairie site. We found that biodiversity metrics were as high or higher than the reference sites. In addition, we also found that there were more observations of species of high conservation concern present at the restored stie. This research supports that the reconstructive restoration that took place at Riverby Ranch was highly effective at restoring a diverse and abundant grassland and wetland bird community.
Investigating the Spatial Relationship between Suicide and Race/Ethnicity: The Case for Alternate Rate Adjustment Techniques in Medical Geography
This work explores potential distortions created by race and ethnicity on the visualization, interpretation, and understanding of the spatial distribution of suicide in the United States. Due to radically different suicide rates among racial/ethnic groups, traditional crude or age-adjusted rates may introduce statistical confounding in both linear and spatial models. Using correlation, choropleth mapping, hot spot analysis, and location-allocation modeling, this work shows how traditional methods of health system planning may unintentionally overlook elevated risk in minority-dominated areas like inner cities, the Texas/Mexico border region, and the Deep South. The final chapter introduces a simulation protocol for examining potential distortions in datasets to identify spatial and non-spatial distortions created by the underlying population composition. Methodologically, this dissertation contributes to the discourse on place context versus population composition. More generally, this research points to potential hazards to creating a more inclusive and equitable healthcare system.
Space Use, Microhabitat and Macrohabitat Use of the Three-Toed Box Turtle (Terrapene carolina) in North Texas
Box turtle (Terrapene carolina) populations are steadily declining due their unique natural history, effects of climate change, and anthropogenic land use change. There is a need for updated information on box turtle space and micro and macro-habitat use to inform conservation efforts. This study used VHF radiotelemetry and GPS data loggers to examine box turtle space and habitat use in North Texas. Box turtle home range sizes averaged 6.6ha (range = 0.79 - 18.08, n = 23), and males (n = 9) had larger home ranges than females (n = 14; W = 31.5, P = 0.05). Home range size was best explained by a combination of variables including sex and body size, but overall, home ranges that consisted of higher percentages of suitable box turtle habitat were smaller. Box turtles used deciduous forest more than expected and wetlands less than expected by chance (Fisher's exact test, P < 0.0001). The most informative variable for box turtle macrohabitat selection was NDVI. Box turtles selected microhabitats with a higher percent litter (t = -2.16, P < 0.05) and understory cover (t = -5.03, P < 0.05). The results of CART analysis showed the nested importance of macro- and microhabitat and identified NDVI as the most important variable for predicting suitable box turtle habitat. Given these results, we postulate that NDVI can be used to identify suitable box turtle habitat at landscape scales to aid in management and conservation efforts. We found that three-toed box turtles are using habitat differently than what has been reported in eastern box turtles, providing support for the theory that three-toed box turtles should be classified as a separate species.
Acute Toxicity of Crude Oil Exposures to Early Life Stage Teleosts: Contribution of Impaired Renal Function and Select Environmental Factors
Oil spills are well-known adverse anthropogenic events, as they can induce severe impacts on the environment and negative economic consequences. Still, much remains to be learned regarding the effects of crude oil exposure to aquatic organisms. The objectives of this dissertation were to fill some of those knowledge gaps by examining the effects of Deepwater Horizon (DWH) crude oil exposure on teleost kidney development and function. To this end, I analyzed how these effects translate into potential osmoregulatory impairments and investigated the interactive effects of ubiquitous natural factors, such as dissolved organic carbon (DOC) and ultraviolet (UV) light, on acute crude oil toxicity. Results demonstrated that acute early life stage (ELS) crude oil exposure induces developmental defects to the primordial kidney in teleost fish (i.e., the pronephros) as evident by alterations in: (1) transcriptional responses of key genes involved in pronephros development and function and (2) alterations in pronephros morphology. Crude oil-exposed zebrafish (Danio rerio) larvae presented defective pronephric function characterized by reduced renal clearance capacity and altered filtration selectivity, factors that likely contributed to the formation of edema. Latent osmoregulatory implications of crude oil exposure during ELS were observed in red drum (Sciaenops ocellatus) larvae, which manifested reduced survival in hypoosmotic waters, likely due to defective pronephros development and function. Finally, DOC-UV co-exposure slightly reduced acute crude oil photo-enhanced toxicity in red drum larvae. This dissertation provided novel information regarding crude oil toxicity that can be incorporated into environmental risk assessment and management for future oil spills.
Correlation of Watershed NDVI Values to Benthic Macroinvertebrate Biodiversity in Eight North American Wadeable Streams
Water quality of a stream or river is influenced by the surrounding landscape and vegetation. The Normalized Difference Vegetation Index (NDVI) is commonly used to characterize landcover and vegetation density. Benthic macroinvertebrates are ubiquitous in freshwater streams and are excellent indicators of the quality of freshwater habitats. Data from one NDVI remote sensing flight and one macroinvertebrate sampling event for eight wadeable stream study sites in the National Ecological Observatory Network (NEON) were acquired. Proportions of high, moderate, and sparse vegetation were calculated for each stream watershed using ArcGIS. Functional feeding groups and tolerance values were assigned to macroinvertebrate taxa. The Fourth-corner and RLQ methods of analysis, available in the ade4 package for R software, were used to evaluate the relationships of macroinvertebrate traits with environmental variables. Hypothesis testing using Model 6 in the ade4 package resulted in p-values of 0.066 and 0.057 for global (overall) significance. Mean NDVI values of moderately vegetated areas and proportion of sparse vegetation were found to be significant to percent shredders at alpha ≤ 0.05. Results of these methods of analysis, when combined with traditional macroinvertebrate sampling metrics, show that NDVI can be a useful, additional tool to characterize a watershed and its effects on macroinvertebrate community composition and structure.
Ecosystem Services and Sustainability: A Framework for Improving Decision-Making in Urban Areas
Ecosystem services are the varied goods and benefits provided by ecosystems that make human life possible. This concept has fostered scientific explorations of the services that nature provides to people with the goal of sustaining those services for future generations. As the world becomes increasingly urban, ecosystems are reshaped, and services are degraded. Provisioning and regulating ecosystem services, landscape planning, decision making, and agricultural systems and technologies play a distinctive role in feeding and sustaining the expanding urban population. Hence, the integrated assessment of these coupled components is necessary to understand food security and sustainable development. Nevertheless, frameworks that incorporate ecosystem services, urbanization, and human wellbeing are still scarce due to several conceptual and methodological gaps that challenge this assessment. As a consequence, these frameworks are not operationalized, and ecosystem services rarely receive proper attention in decision making. This dissertation seeks to improve our understanding of the role of ecosystem services at the landscape level and provides an approach for operationalizing decisions that affect sustainable practices and human wellbeing.
Metacommunity Dynamics of Medium- and Large-Bodied Mammals in the LBJ National Grasslands
Using metacommunity theory, I investigated the mechanisms of meta-assemblage structure and assembly among medium- to large-bodied mammals in North Texas. Mammals were surveyed with camera-traps in thirty property units of the LBJ National Grasslands (LBJNG). In Chapter II the dispersal and environmental-control based processes in community assembly were quantified within a metacommunity context and the best-fit metacommunity structure identified. A hypothesis-driven modelling approach was used in Chapter III to determine if the patterns of species composition and site use could be explained by island biogeography theory (IBT) or the habitat amount hypothesis (HAH). Islands were defined as the LBJNG property unit or the forest patch bounded by the property unit. Forest cover was selected as the focal habitat for the HAH. Seasonal dynamics were explored in both chapters. Metacommunity structure changed with each season, resulting in quasi-nested and both quasi and idealized Gleasonian and Clementsian structures. Results indicated that the anthropogenic development is, overall, not disadvantageous for this assemblage, that community assembly receives equal contributions from spatial and environmental factors, and that the metacommunity appears to operate under the mass effects paradigm. The patterns of species composition and site use were not explained by either IBT or HAH. Likely because this assemblage of generalist, dispersal-capable mammals are utilizing multiple habitat types both in the protected land and in the private land. This research highlights the versatility of these species and the potential value of rural countryside landscapes for wildlife conservation.
Biomonitoring at Dallas-Fort Worth International Airport: Relating Watershed Land Use with Aquatic Life Use
The Dallas-Fort Worth International (DFW) Airport is located in a densely urbanized area with one of the fastest-growing populations in the U.S.A. The airport property includes a large tract of "protected" riparian forest that is unique to the urban surroundings. This dissertation explores variables that influence the benthic macroinvertebrate community structure found in urbanized prairie streams that were initially assessed by the University of North Texas (UNT) Benthic Ecology Lab during four, non-consecutive biomonitoring studies (2004, 2005, 2008, and 2014) funded by the DFW Airport. Additionally, land use analysis was performed using 5-meter resolution satellite imagery and eCognition to characterize the imperviousness of the study area watersheds at multiple scales. Overall, flow conditions and imperviousness at the watershed scale explained the most variability in the benthic stream community. Chironomidae taxa made up 20-50% of stream communities and outperformed all other taxa groups in discriminating between sites of similar flows and urban impairments. This finding highlights the need for genus level identifications of the chironomid family, especially as the dominant taxa in urban prairie streams. Over the course of these biomonitoring survey events, normal flow conditions and flows associated with supra-seasonal drought were experienced. Prevailing drought conditions of 2014 did not negatively influence stream communities, allowing this study to capture the long-term natural (temporal) variability of urban prairie stream communities. Such long-term studies are imperative for discerning between stream impairment versus natural variation, especially as droughts become more frequent and severe.
Ecological Responses to Severe Flooding in Coastal Ecosystems: Determining the Vegetation Response to Hurricane Harvey within a Texas Coast Salt Marsh
Vegetative health was measured both before and after Hurricane Harvey using remotely sensed vegetation indices on the coastal marshland surrounding Galveston Island's West Bay. Data were recorded on a monthly basis following the hurricane from September of 2005 until September of 2019 in order to document the vegetation response to this significant disturbance event. Both initial impact and recovery were found to be dependent on a variety of factors, including elevation zone, spatial proximity to the bay, the season during which recovery took place, as well as the amount of time since the hurricane. Slope was also tested as a potential variable using a LiDAR-derived slope raster, and while unable to significantly explain variations in vegetative health immediately following the hurricane, it was able to explain some degree of variability among spatially close data points. Among environmental factors, elevation zone appeared to be the most key in determining the degree of vegetation impact, suggesting that the different plant assemblages that make up different portions of the marsh react differently to the severe flooding that took place during Harvey.
Ozone Pollution Monitoring and Population Vulnerability in Dallas-Ft. Worth: A Decision Support Approach
In urban environments, ozone air pollution, poses significant risks to respiratory health. Fixed site monitoring is the primary method of measuring ozone concentrations for health advisories and pollutant reduction, but the spatial scale may not reflect the current population distribution or its future growth. Moreover, formal methods for the placement of ozone monitoring sites within populations potentially omit important spatial criteria, producing monitoring locations that could unintentionally underestimate the exposure burden. Although air pollution affects all people, the combination of underlying health, socioeconomic and demographic factors exacerbate the impact for socially vulnerable population groups. A need exists for assessing the spatial representativeness and data gaps of existing pollution sensor networks and to evaluate future placement strategies of additional sensors. This research also seeks to understand how air pollution monitor placement strategies may neglect social vulnerabilities and therefore, potentially underestimate exposure burdens in vulnerable populations.
Conducting Tick-Borne Disease Research in Texas with a Focus on Rickettsia spp.
The field of vector-borne disease research uses multidisciplinary approaches to help understand complicated interactions. This dissertation, covers three different aspects of tick-borne disease research which all focus on exploring tick-borne diseases in the non-endemic areas of Denton, County Texas and the state of Texas with a focus on Rickettsia spp. These aspects include tick sampling, testing ticks for the presence of Rickettsia spp., and creating species distribution maps of the Rickettsia spp. Rickettsia amblyommatis and tick species Amblyomma americanum.
The Effects of Leadership Development on Student Retention in STEM
The Science Teaching and Research (STAR) Leadership Program at Austin College was designed to intentionally include leadership development into the science curriculum and provides an opportunity to determine the effects of student leadership development on the retention of students in science, technology, engineering, and mathematics (STEM). This dissertation used a quasi-experimental design to determine: 1) if STEM retention can be explained though the inclusion of leadership development into the curriculum; 2) if there is a difference between Austin College students who choose a STEM major compared to students who do not; and 3) if there is a difference between Austin College students who complete a STEM degree compared to students who do not. Census data were collected on 2,137 students who enrolled in STEM courses beginning in the fall of 2008 through the spring of 2017, and factors affecting retention were compared across three 3-year time periods that spanned before the program was initiated through wider implementation. A logistic regression showed that there was no significant positive association between leadership development and STEM retention when taking into account other pre-college and demographic factors that have been linked to retention in the literature. However, a one-way ANOVA showed that the academic factors significantly decreased as the STAR program progressed. Further studies are required to understand student benefits associated with the current program.
Exploration of Explanatory Variables in the Creation of Linear Regression Models and Logistic Regression Models to Predict the Performance of Preservice Teachers on the Science Portion of the EC-6 TExES Certification Examination
The purpose of this study was to analyze the current and pre-service conditions that can affect student teachers' preparedness to pass the science portion of the EC-6 Texas Examinations for Educator Standards (TExES), one of the mandatory certification exam to become a teacher in Texas. Two types of prediction models were employed in this study: binomial logistic regression and multiple linear regression. The independent variables used in this study were: final grade in BIOL 1082, classification of students, transfer status, taken college biology, taken college chemistry, taken college physics, taken college environmental science, taken college earth science, attending college part-time, number of credits taken during the semester, first-generation college student, relatives with degree in education, and current GPA. The dependent variable of this study was the posttest score on science portion of the EC-6 TExES practice exam. A total of 170 preservice teachers participated this study. This study used students enrolled in BIOL 1082, who volunteered to take a Biology for Educators QualtricsTM survey and the EC-6 TExES practice exam in a pretest (start of semester) and posttest (end of semester) form. The findings of this study revealed that the single best predictor of preservice teachers' performance on the science portion of EC-6 TExES practice certification examination was the Grade in BIOL 1082.
Irrigation Methods and Their Effects on Irrigation Water Efficiency in High Tunnels
Improving water efficiency is and will continue to be a top concern to meet the world food production demands for a growing population. By having a clear understanding of water efficiencies, communities will be able to address these concerns from an economic standpoint and use more productive methods to grow food and limit water consumption. This study examines the water efficiencies of three irrigation methods over a single growing season in southeastern Oklahoma. Two crops, tomatoes and cucumbers, were grown using drip irrigation, a self-wicking container, and a non-circulating hydroponics barrel. Results at the end of the season showed the drip irrigation method had the highest water efficiency in terms of yield of product over water applied for both crops. The drip irrigation method also had the lowest associated set up costs and second lowest time requirements after the hydroponics method. These results were found to be consistent with other studies that compared drip irrigation to other irrigation methods and showed drip to have the highest water efficiencies.
Spatial Variations and Cultural Explanations to Obesity in Ghana
While obesity is now recognized as a major health concern in Ghana, the major drivers, causal factors, and their spatial variation remain unclear. Nutritional changes and lack of physical activity are frequently blamed but the underlying factors, particularly cultural values and practices, remain understudied. Using hot spot analysis and spatial autocorrelation, this research investigates the spatial patterns of obesity in Ghana and the explanatory factors. We also use focus group discussions to examine the primary cultural factors underlying these patterns. The results show that wealth, high education, and urban residence are the best positive predictors of obesity, while poverty, low education, and rural residence are the best (negative) predictors of obesity. Consequently, improving the socioeconomic status, for example, through higher levels of education and urbanization may increase obesity rates. Furthermore, the cultural preference for fat body as the ideal body size drives individual aspiration for weight gain which can lead to obesity. Thus, reducing obesity rates in Ghana is impossible without addressing the underlying cultural values.
American Lawn Addictions: Effects of Environmental Education on Student Preferences for Xeriscaping as an Alternative in North Central Texas, USA
Urban land use and land cover has changed in the USA, giving rise to the American lawn – manicured, resource-intensive, and non-native. Green infrastructure design has been suggested in the literature as a potential alternative to the American lawn when managed as native xeriscapes, which require little to no irrigation after establishment. Given the influence of public preference on landscaping decisions, what is the relationship between the perceived value and ecological benefits of the American lawn compared to such alternatives? Few studies have explored this question in addition to the effects of college courses on influencing student preferences, as future stakeholders, towards native xeriscapes as alternatives to the American lawn. This research measured the effects of an introductory environmental education (EE) course on measurably influencing undergraduate student preferences for four xeriscapes as alternatives to the American lawn. To measure these effects, this study utilized the perceptions of 488 students enrolled in an indirect introductory EE course and 131 students enrolled in an introductory non-EE course. Three key results emerged from this research. Students preferred the American lawn more than xeriscape alternatives, irrespective to course enrolled. Introductory non-EE did not have an effect on student preferences, whereas indirect introductory EE did show some effects on student preferences. Lastly, student preferences were negatively associated with NPP per photosynthetically active square meter. The data from this study suggests that indirect introductory EE does not shift aesthetic landscape preferences towards pro-environmental alternatives. These results show promise for shifting such preferences via more direct EE approaches.
Long-Term Citizen Science Water Monitoring Data: An Exploration of Accuracy over Space and Time
The Texas Stream Team (TST) is one of an increasing number of citizen science water monitoring programs throughout the US which have been continuously collecting surface water quality data under quality assurance protocols for decades. Volunteer monitoring efforts have generated monitoring datasets that are long-term, continuous, and cover a large geographic area - characteristics shown to be valuable for scientists and professional agencies. However, citizen science data has been of limited use to researchers due to concerns about the accuracy of data collected by volunteers, and the decades of water quality monitoring data collected by TST volunteers is not widely used, if at all. A growing body of studies have attempted to address accuracy concerns by comparing volunteer data to professional data, but this has rarely been done with large-scale, existing datasets like those collected by TST. This study assesses the accuracy of the volunteer water quality data collected across the state of Texas by the TST citizen science program between 1992-2017 by comparing it to professional data from corresponding stations during the same time period, as well as comparing existing and experimental data from a local TST partner agency. The results indicate that even large-scale, existing volunteer and professional data with unpaired samples that may have been taken months apart can show statewide agreement of 80% for all parameters (DO = 77%, pH = 79%, conductivity = 85%) over the 38 years of sampling included in the analyses, across all locations. The local case study using paired datasets for which a greater number of factors were controlled for show an even higher agreement between volunteers and professionals (DO = 91%, pH = 87%, conductivity = 100%) and show no significant difference between experimental and existing sampling data. The results from this study indicate that TST has been collecting water …
Mass Spectrometry-Based Identification of Ceramic-Bound Archaeological Protein Residues: Method Validation, Residue Taphonomy, and Prospects
Despite the variety of successful reports of the preservation, recovery, and identification of archaeological proteins in general, there are few positive reports regarding mass spectrometry-based identification of ceramic-bound proteins. In large part, this shortage is due to the lack of consideration for the unique taphonomic histories of such residues and, in general, methods development. Further, because negative results are rarely published, there is no baseline to which results can be compared. This paper attempts to address these challenges via a multi-pronged approach that uses mass spectrometry and complementary approaches to evaluate ceramic-bound protein preservation in both controlled, actualistic experiments, and in archaeological artifacts. By comparing the results obtained from protein-spiked, experimentally-aged ceramic to those obtained from both faunal and ceramic archaeological materials, an enhanced perspective on protein preservation and subsequent recovery and identification is revealed. This perspective, focusing on taphonomy, reveals why negative results may be the norm for ceramic artifacts when non-targeted methods are employed, and provides insight into how further method development may improve the likelihood of obtaining positive results.
Producing a Film on Oil Spill Research for the Public
The Deepwater Horizon oil drilling rig exploded on April 20, 2010, off the coast of Louisiana in the Gulf of Mexico. Following the spill, British Petroleum, leaser of the rig, set up a funding institution known as the Gulf of Mexico Research Initiative (GoMRI) to support research and understanding of the spill on the environments and peoples of the gulf. This outreach project was created alongside research of the RECOVER consortium, funded by GoMRI, to communicate what is happening within research labs around the country to understand the effect that the spill had on fish in pelagic and coastal regions of the gulf. The outreach project is composed of a short film (Deepwaters: The Science of a Spill, 18 min) and related outreach materials posted to Instagram (@FishandOilSpills).
Corbicula fluminea Invasion as a Secondary Effect of Hydrilla verticillata Management via Triploid Grass Carp (Ctenopharyngodon idella)
A study of Asian clam (Corbicula fluminea Müller) colonization in relation to changes in aquatic vegetation community as a result of management of Hydrilla verticillata (L. f.) Royle with grass carp was conducted at the Lewisville Aquatic Ecosystem Research Facility (LAERF), Lewisville, TX, from April 2015 through October 2016. Percent vegetation cover, C. fluminea abundance and water quality metrics (pH, turbidity, conductivity, DO, calcium, chlorophyll a) from 16 experimental subjects were analyzed. Treatments included four replicated grass carp stocking densities; 1-control with no fish stocked (n = 4), 2-low density of 40-43 fish per vegetated ha (n = 4), 3-medium density of 72-81 fish per vegetated ha (n = 4) and 4-high density of 110-129 fish per vegetated ha (n = 4). Data analysis showed statistical significance in the relation of C. fluminea abundance to percent vegetation cover (multiple linear regression, r2 = 0.820), grass carp stocking densities (two-way analysis of variance, p = <0.001) and chlorophyll a (multiple linear regression, r2 = 0.339). Findings of this research indicate the possibility that management of hydrilla had enabled establishment of secondary invasive species.
The Influence of Disease Mapping Methods on Spatial Patterns and Neighborhood Characteristics for Health Risk
This thesis addresses three interrelated challenges of disease mapping and contributes a new approach for improving visualization of disease burdens to enhance disease surveillance systems. First, it determines an appropriate threshold choice (smoothing parameter) for the adaptive kernel density estimation (KDE) in disease mapping. The results show that the appropriate threshold value depends on the characteristics of data, and bandwidth selector algorithms can be used to guide such decisions about mapping parameters. Similar approaches are recommended for map-makers who are faced with decisions about choosing threshold values for their own data. This can facilitate threshold selection. Second, the study evaluates the relative performance of the adaptive KDE and spatial empirical Bayes for disease mapping. The results reveal that while the estimated rates at the state level computed from both methods are identical, those at the zip code level are slightly different. These findings indicate that using either the adaptive KDE or spatial empirical Bayes method to map disease in urban areas may provide identical rate estimates, but caution is necessary when mapping diseases in non-urban (sparsely populated) areas. This study contributes insights on the relative performance in terms of accuracy of visual representation and associated limitations. Lastly, the study contributes a new approach for delimiting spatial units of disease risk using straightforward statistical and spatial methods and social determinants of health. The results show that the neighborhood risk map not only helps in geographically targeting where but also in tailoring interventions in those areas to those high risk populations. Moreover, when health data is limited, the neighborhood risk map alone is adequate for identifying where and which populations are at risk. These findings will benefit public health tasks of planning and targeting appropriate intervention even in areas with limited and poor-quality health data. This study not only fills the identified …
Adrenergic and Cholinergic Regulation of Cardiovascular Function in Embryonic Neotropic Cormorants (Phalacrocorax basilianus)
Investigations of cholinergic and adrenergic tone on heart rate (fH) and mean arterial pressure (Pm) during embryonic development have been conducted on numerous avian species. While these investigations have documented that adrenergic tone, a continuous stimulation, on fH and Pm is vital to embryonic development in the birds studied to date, development of cholinergic tone on fH has been shown to vary even within species. Further, past studies have been bias to focus primarily on precocial species while altricial species remain poorly understood in this context. The goal of this investigation was to investigate the role of cholinergic and adrenergic tone on fH and Pm of an altricial species, the neotropic cormorant (P. brasilianus) to address this bias. The embryonic neotropic cormorant possesses B-and-a adrenergic tone on fH and Pm at 70% and 90% incubation while cholinergic tone on fH occurs at 90% incubation. This pattern of control is similar to that previously reported for several species of precocial birds suggesting the development of tonic cardiovascular regulation may be conserved across avian taxa.
The Effects of Air Pollution on the Intestinal Microbiota: A Novel Approach to Assess How Gut Microbe Interactions with the Environment Affect Human Health
This thesis investigates how air pollution, both natural and anthropogenic, affects changes in the proximal small intestine and ileum microbiota profile, as well as intestinal barrier integrity, histological changes, and inflammation. APO-E KO mice on a high fat diet were randomly selected to be exposed by whole body inhalation to either wood smoke (WS) or mixed vehicular exhaust (MVE), with filtered air (FA) acting as the control. Intestinal integrity and histology were assessed by observing expression of well- known structural components tight junction proteins (TJPs), matrix metallopeptidase-9 (MMP-9), and gel-forming mucin (MUC2), as well known inflammatory related factors: TNF-α, IL-1β, and toll-like receptor (TLR)-4. Bacterial profiling was done using DNA analysis of microbiota within the ileum, utilizing 16S metagenomics sequencing (Illumina miSeq) technique. Overall results of this experiment suggest that air pollution, both anthropogenic and natural, cause a breach in the intestinal barrier with an increase in inflammatory factors and a decrease in beneficial bacteria. This evidence suggests the possibility of air pollution being a potential causative agent of intestinal disease as well as a possible contributing mechanism for induction of systemic inflammation.
Analysis of Students' Knowledge, Perceptions, and Interest in Engineering Post Teacher Participation in a National Science Foundation (NSF) Research Experience for Teachers (RET) Professional Development
This study examined the impact of the National Science Foundation's Research Experience for Teachers (RET) in engineering at University of North Texas on students after their teachers' participation in the program. Students were evaluated in terms of self-efficacy, knowledge of engineering, perceptions of engineering, and interest in engineering. A 22-item Likert pre/post survey was used for analysis, and participants included 589 students from six high schools, one middle school, and one magnet school. Paired surveys were analyzed to determine if there was a statistically significant difference in attitudes and knowledge after teachers implemented lessons from their time at the RET. Surveys were also analyzed to determine if there was a statistically significant difference in student response based on gender or student school type. Results showed no statistically significant difference in the self-efficacy of students, however there was a statistically significant difference in knowledge, perceptions, and interest in engineering. In addition, there was a statistically significant difference between genders on an isolated question, and seven out of the 22 Likert questions showed a statistically significant difference between student school types.
Residential Grid-Connected Photovoltaics Adoption in North Central Texas: Lessons from the Solarize Plano Project
Residential Grid-Connected Photovoltaics (GPV) systems hold remarkable promise in their potential to reduce energy use, air pollution, greenhouse gas emissions, and energy costs to consumers, while also providing grid efficiency and demand-side management benefits to utilities. Broader adoption of customer-sited GPV also has the potential to transform the traditional model of electricity generation and delivery. Interest and activity has grown in recent years to promote GPV in north central Texas. This study employs a mixed methods design to better understand the status of residential GPV adoption in the DFW area, and those factors influencing a homeowner's decision of whether or not to install a system. Basic metrics are summarized, including installation numbers, distribution and socio-demographic information for the case study city of Plano, the DFW region, Texas, and the United States. Qualitative interview methods are used to gain an in-depth understanding of the factors influencing adoption for the Solarize Plano case study participants; to evaluate the effectiveness of the Solarize Plano program; and to identify concepts that may be regionally relevant. Recommendations are presented for additional research that may advance GPV adoption in north central Texas.
Biodiversity and Genetic Structure of Benthic Macroinvertebrates Along an Altitudinal Gradient: A Comparison of the Windhond and Róbalo River Communities on Navarino Island, Chile
Altitudinal gradients in Sub-Antarctic freshwater systems present unique opportunities to study the effect of distinct environmental gradients on benthic macroinvertebrate community composition and dispersal. This study investigates patterns in biodiversity, dispersal and population genetic structure of benthic macroinvertebrate fauna across an altitudinal gradient between two watersheds on Navarino Island in southern Chile. Patterns in diversity, density, evenness and functional feeding groups were not significantly different across the altitudinal gradient in both the Windhond and Róbalo Rivers. Taxa richness in both rivers generally increased from the headwaters of the river to the mouth, and functional feeding group patterns were consistent with the predictions of the River Continuum Concept. Population genetic structure and gene flow was investigated by sampling the mitochondrial cytochrome oxidase I gene in two invertebrate species with different dispersal strategies. Hyalella simplex (Amphipoda) is an obligate aquatic species, and Meridialaris chiloeense (Ephemeroptera) is an aquatic larvae and a terrestrial winged adult. Contrasting patterns of population genetic structure were observed. Results for Hyalella simplex indicate significant differentiation in genetic structure in the Amphipod populations between watersheds and lower genetic diversity in the Róbalo River samples, which may be a result of instream dispersal barriers. Meridialaris chiloeense exhibited weak population structure but higher genetic diversity, which suggests this species is able to disperse widely as a winged adult.
The Effects of Neonicotinoid Exposure on Embryonic Development and Organ Mass in Northern Bobwhite Quail
Since their emergence in the early 1990s, neonicotinoid use has increased exponentially to make them the world's most prevalent insecticides. Although there is considerable research concerning the lethality of neonicotinoids, their sub-lethal and developmental effects are still being explored, especially with regards to non-mammalian species. The goal of this research was to investigate the effects of the neonicotinoid imidacloprid on the morphological and physiological development of northern bobwhite quail (Colinus virginianus). Bobwhite eggs (n = 650) were injected with imidacloprid concentrations of 0 (sham), 10, 50, 100 and 150 grams per kilogram of egg mass, which was administered at day 0 (pre-incubation), 3, 6, 9, or 12 of growth. Embryos were dissected on day 19 when they were weighed, staged, and examined for any overt structural deformities. Embryonic heart, liver, lungs and kidneys were also weighed and preserved for future use. Treated embryos exhibited increased frequency of severely deformed beaks and legs, as well as larger hearts and smaller lungs at the higher dosing concentrations. Some impacts are more pronounced in specific dosing periods, implying that there may be critical windows of development when embryos are highly susceptible to neonicotinoid exposure. This investigation suggests that imidacloprid could play a significant role in chick survival and declining quail populations in treated regions of the country.
The Influence of Urban Green Spaces on Declining Bumble Bees (Hymenoptera: Apidae)
Bumble bees (Bombus spp.) are adept pollinators of countless cultivated and wild flowering plants, but many species have experienced declines in recent decades. Though urban sprawl has been implicated as a driving force of such losses, urban green spaces hold the potential to serve as habitat islands for bumble bees. As human populations continue to grow and metropolitan areas become larger, the survival of many bumble bee species will hinge on the identification and implementation of appropriate conservation measures at regional and finer scales. North Texas is home to some the fastest-growing urban areas in the country, including Denton County, as well as at least two declining bumble bee species (B. pensylvanicus and B. fraternus). Using a combination of field , molevular DNA and GIS methods I evaluated the persistence of historic bumble bee species in Denton County, and investigated the genetic structure and connectivity of the populations in these spaces. Field sampling resulted in the discovery of both B. pensylvanicus and B. fraternus in Denton County's urban green spaces. While the relative abundance of B. fraternus in these spaces was significantly lower than historic levels gleaned from museum recors, that of B. pensylvanicus was significantly higher. Statistical analyses found that both bare ground and tree cover surrounding sample sites were negatively associated with numbers of bumble bee individuals and hives detected in these green spaces. Additionally, limited genetic structuring of bumble bee populations was detected, leading to the conclusion that extensive gene flow is occurring across populations in Denton County.
Informing Conservation Management Using Genetic Approaches: Greater Sage-Grouse and Galápagos Short-Eared Owls as Case Studies
Small isolated populations are of particular conservation interest due to their increased extinction risk. This dissertation investigates two small wild bird populations using genetic approaches to inform their conservation. Specifically, one case study investigated a Greater Sage-grouse (Centrocercus urophasianus) population located in northwest Wyoming near Jackson Hole and Grand Teton National Park. Microsatellite data showed that the Jackson sage-grouse population possessed significantly reduced levels of neutral genetic diversity and was isolated from other Wyoming populations. Analysis with single nucleotide polymorphisms (SNPs) and microsatellite data provided further evidence that the population's timing of isolation was relatively recent and most likely due to recent anthropogenic habitat changes. Conservation recommendations include maintaining or increasing the population's current size and reestablishing gene flow with the nearest large population. The second case study investigated the genetic distinctiveness of the Floreana island population of the Galápagos Short-eared Owl (Asio flammeus galapagoensis). Mitochondrial DNA sequence data did not detect differences across nine island populations, yet microsatellite and morphometric data indicated that limited gene flow existed with the population and surrounding island populations, which appeared asymmetric in direction from Floreana to Santa Cruz with no indication of gene flow into Floreana. These results have important conservation implications and recommend that the Floreana Short-eared Owl population be held in captivity during the rodenticide application planned for an ecosystem restoration project in 2018. The population is less likely to receive immigrants from surrounding island populations if negatively effected by feeding on poisoned rodents.
Photo-induced Toxicity of Deepwater Horizon Spill Oil to Four Native Gulf of Mexico Species
The 2010 Deepwater Horizon oil spill resulted in the accidental release of millions of barrels of crude oil into the Gulf of Mexico (GoM). Photo-induced toxicity following co-exposure to ultraviolet (UV) radiation is one mechanism by which polycyclic aromatic hydrocarbons (PAHs) from oil spills may exert toxicity. Blue crab (Callinectes sapidus) are an important commercial and ecological resource in the Gulf of Mexico and their largely transparent larvae may make them sensitive to PAH photo-induced toxicity. Mahi-mahi (Coryphaena hippurus), an important fishery resource, have positively buoyant, transparent eggs. These characteristics may result in mahi-mahi embryos being at particular risk from photo-induced toxicity. Red drum (Sciaenops ocellatus) and speckled seatrout (Cynoscion nebulosus) are both important fishery resources in the GoM. They spawn near-shore and produce positively buoyant embryos that hatch into larvae in about 24 h. The goal of this body of work was to determine whether exposure to UV as natural sunlight enhances the toxicity of crude oil to early lifestage GoM species. Larval and embryonic organisms were exposed to several dilutions of water accommodated fractions (WAF) from several different oils collected in the field under chain of custody during the 2010 spill and two to three gradations of natural sunlight in a factorial design. Here, we report that co-exposure to natural sunlight and oil significantly reduced larval survival and embryo hatch compared to exposure to oil alone.
Photoinduced Toxicity in Early Lifestage Fiddler Crab (Uca longisignalis) Following Exposure to Deepwater Horizon Spill Oil
The 2010 Deepwater Horizon (DWH) oil spill resulted in a large release of polycyclic aromatic hydrocarbons (PAH) into the Gulf of Mexico. PAH can interact with ultraviolet radiation (UV) resulting in increased toxicity, particularly to early lifestage organisms. The goal of this research was to determine the sensitivity of fiddler crab larvae (Uca longisignalis) to photo-induced toxicity following exposure to Deepwater Horizon spill oil in support of the DWH Natural Resource Damage Assessment. Five replicate dishes each containing 20 larvae, were exposed to one of three UV treatments (10%, 50%, and 100% ambient natural sunlight) and one of five dilutions of water accommodated fractions of two naturally weathered source oils. A dose dependent effect of PAH and UV on larval mortality was observed. Mortality was markedly higher in PAH treatments that included co-exposure to more intense UV light. PAH treatments under low intensity sunlight had relatively high survival. These data demonstrate the importance of considering combined effects of non-chemical (i.e. UV exposure) and chemical stressors and the potential for photo-induced effects after exposure to PAH following the Deepwater Horizon spill.
Spatially Explicit Modeling of West Nile Virus Risk Using Environmental Data
West Nile virus (WNV) is an emerging infectious disease that has widespread implications for public health practitioners across the world. Within a few years of its arrival in the United States the virus had spread across the North American continent. This research focuses on the development of a spatially explicit GIS-based predictive epidemiological model based on suitable environmental factors. We examined eleven commonly mapped environmental factors using both ordinary least squares regression (OLS) and geographically weighted regression (GWR). The GWR model was utilized to ascertain the impact of environmental factors on WNV risk patterns without the confounding effects of spatial non-stationarity that exist between place and health. It identifies the important underlying environmental factors related to suitable mosquito habitat conditions to make meaningful and spatially explicit predictions. Our model represents a multi-criteria decision analysis approach to create disease risk maps under data sparse situations. The best fitting model with an adjusted R2 of 0.71 revealed a strong association between WNV infection risk and a subset of environmental risk factors including road density, stream density, and land surface temperature. This research also postulates that understanding the underlying place characteristics and population composition for the occurrence of WNV infection is important for mitigating future outbreaks. While many spatial and aspatial models have attempted to predict the risk of WNV transmission, efforts to link these factors within a GIS framework are limited. One of the major challenges for such integration is the high dimensionality and large volumes typically associated with such models and data. This research uses a spatially explicit, multivariate geovisualization framework to integrate an environmental model of mosquito habitat with human risk factors derived from socio-economic and demographic variables. Our results show that such an integrated approach facilitates the exploratory analysis of complex data and supports reasoning about the underlying spatial …
Dynamics of Stream Fish Metacommunities in Response to Drought and Re-connectivity
This dissertation investigates the spatio-temporal dynamics of intermittent stream fish metacommunities in response drought-induced fragmentation and re-connectivity using both field and experimental approaches. A detailed field study was conducted in two streams and included pre-drought, drought, and post-drought hydrological periods. Fish assemblages and metacommunity structure responded strongly to changes in hydrological conditions with dramatic declines in species richness and abundance during prolonged drought. Return of stream flows resulted in a trend toward recovery but ultimately assemblages failed to fully recover. Differential mortality, dispersal, recruitment among species indicates species specific responses to hydrologic fragmentation, connectivity, and habitat refugia. Two manipulative experiments tested the effects of drought conditions on realistic fish assemblages. Fishes responded strongly to drought conditions in which deeper pools acted as refugia, harboring greater numbers of fish. Variability in assemblage structure and movement patterns among stream pools indicated species specific habitat preferences in response predation, resource competition, and desiccation. Connecting stream flows mediated the impacts of drought conditions and metacommunity dynamics in both experiments. Results from field and experimental studies indicate that stream fish metacommunities are influenced by changes in hydrological conditions and that the timing, duration, and magnitude of drought-induced fragmentation and reconnecting stream flows have important consequences metacommunity dynamics.
Effects of Macrophyte Functional Diversity on Taxonomic and Functional Diversity and Stability of Tropical Floodplain Fish Assemblages
Multiple dimensions of biodiversity within and across producer and consumer guilds in the food web affect an ecosystem’s functionality and stability. Tropical and subtropical aquatic ecosystems, which are extremely diverse, have received much less attention than terrestrial ecosystems in regards to the effects of biodiversity on ecosystem functioning. We conducted a field experiment that tested for effects of macrophyte functional diversity on diversity and stability of associated fish assemblages in floodplain lakes of the Upper Paraná River floodplain, Brazil. Three levels of macrophyte functional diversity were maintained through time in five floodplain lakes and response variables included various components of fish taxonomic and functional diversity and stability. Components of functional diversity of fish assemblages were quantified using a suite of ecomorphological traits that relate to foraging and habitat use. Response variables primarily distinguished macrophyte treatments from the control. Macrophyte treatments had, on average, double the number of species and total abundance than the control treatment, but only limited effects on stability. The high diversity treatment was essentially nested within the low diversity for assemblage structure and had similar or even slightly lower levels of species richness and abundance in most cases. Gymnotiformes and young-of-year were diverse and relatively abundant in macrophyte treatments contributing to the large differences in diversity between macrophyte and control treatments. Higher fish diversity in structured habitats compared to more homogenous habitats is likely associated with increased ecomorphological diversity to exploit heterogeneous microhabitats and resources provided by the macrophytes.
Developing a Forest Gap Model to Be Applied to a Watershed-scaled Landscape in the Cross Timbers Ecoregion Using a Topographic Wetness Index
A method was developed for extending a fine-scaled forest gap model to a watershed-scaled landscape, using the Eastern Cross Timbers ecoregion as a case study for the method. A topographic wetness index calculated from digital elevation data was used as a measure of hydrologic across the modeled landscape, and the gap model modified to have with a topographically-based hydrologic input parameter. The model was parameterized by terrain type units that were defined using combinations of USDA soil series and classes of the topographic wetness index. A number of issues regarding the sources, grid resolutions, and processing methods of the digital elevation data are addressed in this application of the topographic wetness index. Three different grid sizes, 5, 10, and 29 meter, from both LiDAR-derived and contour-derived elevation grids were used, and the grids were processed using both single-directional flow algorithm and bi-directional flow algorithm. The result of these different grids were compared and analyzed in context of their application in defining terrain types for the forest gap model. Refinements were made in the timescale of gap model’s weather model, converting it into a daily weather generator, in order to incorporate the effects of the new topographic/hydrologic input parameter. The precipitation model was converted to use a Markov model to initiate a sequence of wet and dry days for each month, and then daily precipitation amounts were determined using a gamma distribution. The output of the new precipitation model was analyzed and compared with a 100-year history of daily weather records at daily, monthly, and annual timescales. Model assumptions and requirements for biological parameters were thoroughly investigated and questioned. Often these biological parameters are based on little more than assumptions and intuition. An effort to base as many of the model’s biological parameters on measured data was made, including a new …
The Effect of Natural Gas Well Setback Distance on Drillable Land in the City of Denton, Texas
Municipalities protect human health and environmental resources from impacts of urban natural gas drilling through setback distances; the regulation of distances between well sites and residences, freshwater wells, and other protected uses. Setback distances have increased over time, having the potential to alter the amount and geographical distribution of drillable land within a municipality, thereby having implications for future land use planning and increasing the potential for future incompatible land uses. This study geographically applies a range of setback distances to protected uses and freshwater wells in the city limits of Denton, Texas to investigate the effect on the amount of land remaining for future gas well development and production. Denton lies on the edge of a productive region of the Barnett Shale geological formation, coinciding with a large concentration of drillable land in the southwestern region of the study area. This region will have the greatest potential for impacts to future municipal development and land use planning as a result of future gas well development and higher setback standards. Given the relatively high acreage of drillable land in industrially zoned subcategory IC-G and the concern regarding gas well drilling in more populated areas, future drilling in IC-G, specifically in IC-G land cover classes mowed/grazed/agriculture and herbaceous, would have the least impact on residential uses and tree cover, as well as decreasing the potential for future incompatible land uses.
Modeling the Effects of Chronic Toxicity of Pharmaceutical Chemicals on the Life History Strategies of Ceriodaphnia Dubia: a Multigenerational Study
Trace quantities of pharmaceuticals (including carbamazepine and sertraline) are continuously discharged into the environment, which causes concern among scientists and regulators regarding their potential long-term impacts on aquatic ecosystems. These compounds and their metabolites are continuously interacting with the orgranisms in various life stages, and may differentially influence development of embryo, larvae, juvenile, and adult stages. To fully understand the potential ecological risks of two candidate pharmaceutical chemicals (carbamazepine (CBZ) and sertraline (SERT)) exposure on survival, growth and reproduction of Ceriodaphnia dubia in three sucessive generations under static renewal toxicity test, a multigenerational approach was taken. Results indicate that SERT exposure showed higher sensitivity to chronic exposure to C. dubia growth and reproduction than CBZ exposure. The lowest concentration to affect fecundity and growth was at 50 µg L-1 SERT in the first two generations. These parameters become more sensitive during the third generation where the LOEC was 4.8 µg L-1. The effective concentrations (EC50) for the number of offspring per female, offspring body size, and dry weight were 17.2, 21.2, and 26.2 µg SERT L-1, respectively. Endpoints measured in this study demonstrate that chronic exposure of C. dubia to SERT leads to effects that occur at concentrations an order of magnitude higher than predicted environmental concentrations indicating potential transgenerationals effects. Additionally, a process-based dynamic energy budget (DEB) model is implemented to predict the simulated effects of chronic toxicity of SERT and CBZ to C. dubia individual behavior at laboratory condition. The model‘s output indicates the ecotoxicological mode of action of SERT exposure, which acts on feeding or assimilation with an effect that rapidly saturates at higher concentrations. Offspring size decreases with the toxic effects on feeding, and offspring number is thus less affected than total investment in reproduction. Consequently, CBZ affects direclty in reproduction which are captured by DEBtox …
Population Dynamics of Zebra Mussels (Dreissena Polymorpha) in a North Texas Reservoir: Implications for Invasions in the Southern United States
This dissertation has two main objectives: first, quantify the effects of environmental conditions on spatio-temporal spawning and larval dynamics of zebra mussels (Dreissena polymorpha [Pallas 1771]) in Lake Texoma, and second, quantify the effects of environmental conditions on survival, growth, and reproduction of young of the year (YOY) juvenile zebra mussels. These biological responses directly influence population establishment success and invasive spread dynamics. Reproductive output of the zebra mussel population in Lake Texoma was significantly related to water temperature and lake elevation. Annual maximum larval (veliger) density decreased significantly indicating a population crash, which was likely caused by thermal stress and variability of lake elevation. In 2011, temperatures peaked at 34.3°C and lake elevation decreased to the lowest level recorded during the previous 18 years, which desiccated a substantial number of settled mussels in littoral zones. Estimated mean date of first spawn in Lake Texoma was observed approximately 1.5 months earlier than in Lake Erie, and peak veliger densities were observed two months earlier. Veligers were observed in the deepest oxygenated water after lake stratification. During a 69-day in situ experiment during summer in Lake Texoma, age-specific mortality of zebra mussels was generally high until temperatures decreased to approximately 28°C, which was observed after lake turnover in late summer. No study organism died after temperatures decreased to less than 26°C, which indicates individuals that survive high summer temperatures are likely to persist into autumn/winter. Shell length growth and soft tissue growth rates were related to temperature and chlorophyll-a concentration, respectively. Growth rates of study organisms were among the highest ever reported for D. polymorpha. Water temperature and body size influenced reproduction of YOY zebra mussels in Lake Texoma. Fecundity of females were positively related to temperature; however, sperm production was negatively related to temperature, which indicates males could be more …
Comparative Phyto-uptake Across Distribution Coefficients of Pharmaceutical Compounds and Aquatic Macrophytes: Carbamazepine and Amiodarone Uptake in Lemna Spp
Few studies have been conducted on the effectiveness of phytoremediation of pharmaceutical compounds, although the persistent and non-acutely toxic nature of many of these compounds in today's water bodies may yield an ideal application for this practice. To quantify the potential effectiveness of plant uptake, kinetic and proportional bioconcentration factors (BCFk, and BCFp, respectively) in nanograms (ng) carbamazepine and amiodarone per gram (g) wet weight plant tissue for Lemna spp. were determined utilizing a 14-day continuous flow-through study. Samples were analyzed using isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS) running in positive ion mode. Kinetic BCF was estimated at 0.538, while proportional BCF was estimated at 0.485. Kinetic BCF for the amiodarone study was estimated at 23.033, whereas proportional BCF was estimated at 41.340. Possible contamination of the C18 column and peristaltic pump failure may have impacted uptake results. In light of variability and current lack of research in the field, this work should be considered exploratory rather than conclusive.
Macroinvertebrate Colonization and Assemblages Associated with Aquatic Macrophytes in a Newly Created Urban Floodway Ecosystem, Dallas, Tx
A study of macroinvertebrate colonization and assemblages, including secondary productivity of the familiar bluet damselfly or Enallagma civile Hagen (Odonata: Coenagrionidae), associated with the aquatic macrophytes Heteranthera dubia (Jacq.) MacMill. (water stargrass) and Potamogeton nodosus Poir. (American pondweed) was conducted at the Dallas Floodway Extension Trinity River Project (DFE) Lower Chain of Wetlands (LCOW), Dallas, TX, from September 2010 through November 2011. Macroinvertebrate abundance, taxa richness, Simpson's index of diversity, and Simpson's evenness from the two macrophytes and from three different wetland cells of varying construction completion dates, water sources, and native aquatic vegetation establishment were analyzed along with basic water quality metrics (temperature °C, pH, dissolved oxygen mg/L, and conductivity µs/cm). E. civile nymphs were separated into five developmental classes for secondary productivity estimations between macrophytes and wetland cell types. Mean annual secondary productivity in the DFE LCOW among two macrophytes of E. civile was 1392.90 ash-free dry weight mg/m²/yr, standing stock biomass was 136.77 AFDW mg/m2/yr, cohort production / biomass (P/B) ratio was calculated to be 4.30 / yr and the annual production / biomass (P/B) ratio was 10.18 /yr.
Quantifying Forest Vertical Structure to Determine Bird Habitat Quality in the Greenbelt Corridor, Denton, Tx
This study presents the integration of light detection and range (LiDAR) and hyperspectral remote sensing to create a three-dimensional bird habitat map in the Greenbelt Corridor of the Elm Fork of the Trinity River. This map permits to examine the relationship between forest stand structure, landscape heterogeneity, and bird community composition. A biannual bird census was conducted at this site during the breeding seasons of 2009 and 2010. Census data combined with the three-dimensional map suggest that local breeding bird abundance, community structure, and spatial distribution patterns are highly influenced by vertical heterogeneity of vegetation surface. For local breeding birds, vertical heterogeneity of canopy surface within stands, connectivity to adjacent forest patches, largest forest patch index, and habitat (vegetation) types proved to be the most influential factors to determine bird community assemblages. Results also highlight the critical role of secondary forests to increase functional connectivity of forest patches. Overall, three-dimensional habitat descriptions derived from integrated LiDAR and hyperspectral data serve as a powerful bird conservation tool that shows how the distribution of bird species relates to forest composition and structure at various scales.
Tissue-specific Bioconcentration Factor of the Synthetic Steroid Hormone Medroxyprogesterone Acetate (Mpa) in the Common Carp, Cyprinus Carpia
Due to the wide spread occurrence of medroxyprogesterone acetate (MPA), a pharmaceutical compound, in wastewater effluent and surface waters, the objectives of this work were to determine the tissue specific uptake and bioconcentration factor (BCF) for MPA in common carp. BCFs were experimentally determined for MPA in fish using a 14-day laboratory test whereby carp where exposed to 100 μg/L of MPA for a 7-day period followed by a depuration phase in which fish were maintained in dechlorinated tap water for an additional 7 days. MPA concentrations in muscle, brain, liver and plasma were determined by liquid chromatography/mass spectrometry (LC/MS). The results from the experiment indicate that MPA can accumulate in fish, however, MPA is not considered to be bioaccumulative based on regulatory standards (BCF ≥ 1000). Although MPA has a low BCF value in common carp, this compound may cause reproductive effects in fish at environmentally relevant concentrations.
Modeling the Relationship Between Golden Algae Blooms in Lake Texoma, Usa, Versus Nearby Land Use and Other Physical Variables
Pyrmnesium parvum, commonly known as golden algae, is an algal species that under certain circumstances releases toxins which can lead to fish kills and the death of other economically and ecologically important organisms. One of the major objectives of the study was to investigate whether a relationship exists between land use and Prymnesium parvum abundance in littoral sites of Lake Texoma, USA. Another objective was to investigate whether a relationship exists between other physical variables and counts of P. parvum. Lastly, developing a valid model that predicts P. parvum abundance was an objective of the study. Through stepwise regression, a small but highly significant amount of the variation in P. parvum counts was found to be explained by wetlands, soil erodibility and lake elevation. The developed model provides insight for potential golden algae management plans, such as maintaining wetlands and teaching land owners the relationship between soil erosivity and golden algae blooms.
Optimizing Scientific and Social Attributes of Pharmaceutical Take Back Programs to Improve Public and Environmental Health
Research continues to show that pharmaceutical environmental contamination has caused adverse environmental effects, with one of the most studied effects being feminization of fish exposed to pharmaceutical endocrine disruptors. Additionally, there are also public health risks associated with pharmaceuticals because in-home reserves of medications provide opportunities for accidental poisoning and intentional medication abuse. Pharmaceutical take back programs have been seen as a remedy to these concerns; however a thorough review of peer-reviewed literature and publicly available information on these programs indicates limited research has been conducted to validate these programs as a purported solution. Furthermore, there are significant data gaps on key factors relating to take back program participants. The purpose of this dissertation was therefore to address these gaps in knowledge and ultimately determine if take back programs could actually improve public and environmental health. This was accomplished by conducting social and scientific research on a take back program called Denton Drug Disposal Day (D4). Socioeconomic, demographic, and geographic characteristics of D4 participants were investigated using surveys and geographic analysis. Impacts on public health were determined by comparing medications collected at D4 events with medications reported to the North Texas Poison Center as causing adverse drug exposures in Denton County. Impacts to environmental health were determined by monitoring hydrocodone concentrations in wastewater effluent released from Denton’s wastewater treatment plant before and after D4 events. Data collected and analyzed from the D4 events and the wastewater monitoring suggests D4 events were successful in contributing to improvements in public and environmental health; however there was insufficient evidence to prove that D4 events were exclusively responsible for these improvements. An additional interesting finding was that willingness to travel to participate in D4 events was limited to a five to six mile threshold. This geographic information, combined with other findings related to socioeconomic, …
A Comparison of Mercury Localization, Speciation, and Histology in Multiple Fish Species From Caddo Lake, a Fresh Water Wetland
This work explores the metabolism of mercury in liver and spleen tissue of fish from a methylmercury contaminated wetland. Wild-caught bass, catfish, bowfin and gar were collected. Macrophage centers, which are both reactive and primary germinal centers in various fish tissues, were hypothesized to be the cause of demethylation of methylmercury in fish tissue. Macrophage centers are differentially expressed in fish tissue based on phylogenetic lineage, and are found primarily in the livers of preteleostean fish and in the spleen of teleostean fish. Histology of liver and spleen was examined in both control and wild-caught fish for pathology, size and number of macrophage centers, and for localization of mercury. Total mercury was estimated in the muscle tissue of all fish by direct mercury analysis. Selenium and mercury concentrations were examined in the livers of wild-caught fish by liquid introduction inductively coupled plasma mass spectrometry (ICP-MS). Total mercury was localized in histologic sections by laser ablation ICP-MS (LA-ICP-MS). Mercury speciation was determined for inorganic and methylmercury in liver and spleen of fish by bas chromatography-cold vapor atomic fluorescence spectroscopy (GC-CVAFS). Macrophage center tissue distribution was found to be consistent with the literature, with a predominance of centers in preteleostean liver and in spleens of teleostean fish. Little evidence histopathology was found in the livers or spleens of fish examined, but differences in morphology of macrophage centers and liver tissue across species are noted. the sole sign of liver pathology noted was increased hepatic hemosiderosis in fish with high proportions of liver inorganic mercury. Inorganic mercury was found to predominate in the livers of all fish but bass. Organic mercury was found to predominate in the spleens of all fish. Mercury was found to accumulate in macrophage centers, but concentrations of mercury in this compartment were found to vary less in relation …
Ecological Significance and Underlying Mechanisms of Body Size Differentiation in White-tailed Deer
Body size varies according to nutritional availability, which is of ecological and evolutionary relevance. The purpose of this study is to test the hypothesis that differences in adult body size are realized by increasing juvenile growth rate for white-tailed deer (Odocoileus virginianus). Harvest records are used to construct growth rate estimates by empirical nonlinear curve fitting. Results are compared to those of previous models that include additional parameters. The rate of growth increases during the study period. Models that estimate multiple parameters may not work with harvest data in which estimates of these parameters are prone to error, which renders estimates from complex models too variable to detect inter-annual changes in growth rate that this simpler model captures
Effects of Layer Double Hydroxide Nanoclays on the Toxicity of Copper to Daphnia Magna
Nanoparticles may affect secondary pollutants such as copper. Layer Double Hydroxides (LDH) are synthetically produced nanoparticles that adsorb copper via cation exchange. Pretreatment of copper test solutions with LDH nanoparticles followed by filtration removal of LDH nanoparticles demonstrated the smallest LDH aggregates removed the most copper toxicity. This was due to increased surface area for cation exchange relative to larger particle aggregates. Co-exposure tests of copper chloride and clay were run to determine if smaller clay particles increased copper uptake by D. magna. Coexposure treatments had lower LC50 values compared to the filtration tests, likely as a result of additive toxicity. LDH nanoclays do reduce copper toxicity in Daphnia magna and may serve as a remediation tool.
A Characterization Of Jackson Blue Spring, Jackson County, Florida
Jackson Blue is a first magnitude spring in the karst terrane of northeast Florida. Previous studies have identified inorganic fertilizer as the source of high nitrate levels in the spring. Agricultural land use and karst vulnerability make Jackson Blue a good model for conservation concerns. This work offers an aggregation of studies relating to the springshed, providing a valuable tool for planning and conservation efforts in the region. An analysis of nitrate levels and other water quality parameters within the springshed did not reveal significantly different values between agricultural and forested land use areas. Confounding factors include: high transmissivity in the aquifer, interspersed land use parcels, and fertilizer application in forested areas due to commercial pine stand activity.
Effect of Rancher’s Management Philosophy, Grazing Practices, and Personal Characteristics on Sustainability Indices for North Central Texas Rangeland
To assess sustainability of privately owned rangeland, a questionnaire was used to gathered data from ranches in Cooke, Montague, Clay, Wise, Parker, and Jack counties in North Central Texas. Information evaluated included: management philosophy, economics, grazing practices, environmental condition, quality of life, and demographics. Sustainability indices were created based on economic and land health indicator variables meeting a minimum Cronbach‘s alpha coefficient (α = 0.7). Hierarchical regression analysis was used to create models explaining variance in respondents’ indices scores. Five predictors explained 36% of the variance in rangeland economic sustainability index when respondents: 1) recognized management inaction has opportunity costs affecting economic viability; 2) considered forbs a valuable source of forage for wildlife or livestock; 3) believed governmental assistance with brush control was beneficial; 4) were not absentee landowners and did not live in an urban area in Texas, and; 5) valued profit, productivity, tax issues, family issues, neighbor issues or weather issues above that of land health. Additionally, a model identified 5 predictors which explained 30% of the variance for respondents with index scores aligning with greater land health sustainability. Predictors indicated: 1) fencing cost was not an obstacle for increasing livestock distribution; 2) land rest was a component of grazing plans; 3) the Natural Resource Conservation Service was used for management information; 4) fewer acres were covered by dense brush or woodlands, and; 5) management decisions were not influenced by friends. Finally, attempts to create an index and regression analysis explaining social sustainability was abandoned, due to the likely-hood of type one errors. These findings provide a new line of evidence in assessing rangeland sustainability, supporting scientific literature concerning rangeland sustainability based on ranch level indicators. Compared to measuring parameters on small plots, the use of indices allows for studying replicated whole- ranch units using rancher insight. Use …
Integrating Selective Herbicide and Native Plant Restoration to Control Alternanthera philoxeroides (Alligator Weed)
Exotic invasive aquatic weeds such as alligator weed (Alternanthera philoxeroides) threaten native ecosystems by interfering with native plant communities, disrupting hydrology, and diminishing water quality. Development of new tools to combat invaders is important for the well being of these sensitive areas. Integrated pest management offers managers an approach that combines multiple control methods for better control than any one method used exclusively. In a greenhouse and field study, we tested the effects of selective herbicide application frequency, native competitor plant introduction, and their integration on alligator weed. In the greenhouse study, alligator weed shoot, root, and total biomass were reduced with one herbicide application, and further reduced with two. Alligator weed cumulative stem length and shoot/root ratio was only reduced after two applications. In the greenhouse, introduction of competitors did not affect alligator weed biomass, but did affect shoot/root ratio. The interaction of competitor introduction and herbicide did not significantly influence alligator weed growth in the greenhouse study. In the field, alligator weed cover was reduced after one herbicide application, but not significantly more after a second. Introduction of competitor species had no effect on alligator weed cover, nor did the interaction of competitor species and herbicide application. This study demonstrates that triclopyr amine herbicide can reduce alligator weed biomass and cover, and that two applications are more effective than one. To integrate selective herbicides and native plant introduction successfully for alligator weed control, more research is needed on the influence competition can potentially have on alligator weed growth, and the timing of herbicide application and subsequent introduction of plants.
Back to Top of Screen