You limited your search to:

 Degree Discipline: Biochemistry
 Degree Level: Master's
 Collection: UNT Theses and Dissertations
The Relationship of Force on Myosin Subfragment 2 Region to the Coiled-Coiled Region of the Myosin Dimer

The Relationship of Force on Myosin Subfragment 2 Region to the Coiled-Coiled Region of the Myosin Dimer

Date: December 2011
Creator: Hall, Nakiuda M.
Description: The stability of myosin subfragment 2 was analyzed using gravitational force spectroscopy. The region was found to destabilize under physiological force loads, indicating the possibility that subfragment 2 may uncoil to facilitate actin binding during muscle contraction. As a control, synthetic cofilaments were produced to discover if the observations in the single molecule assay were due to the lack of the stability provided by the thick filament. Statistically, there was no difference between the single molecule assay data and the synthetic cofilament assay data. Thus, the instability of the region is due to intrinsic properties within subfragment 2.
Contributing Partner: UNT Libraries
Interactions of N-Acylethanolamine Metabolism and Abscisic Acid Signaling in Arabidopsis Thaliana Seedlings

Interactions of N-Acylethanolamine Metabolism and Abscisic Acid Signaling in Arabidopsis Thaliana Seedlings

Date: August 2010
Creator: Cotter, Matthew Q.
Description: N-Acylethanolamines (NAEs) are endogenous plant lipids hydrolyzed by fatty acid amide hydrolase (FAAH). When wildtype Arabidopsis thaliana seeds were germinated and grown in exogenous NAE 12:0 (35 µM and above), growth was severely reduced in a concentration dependent manner. Wildtype A. thaliana seeds sown on exogenous abscisic acid (ABA) exhibited similar growth reduction to that seen with NAE treatment. AtFAAH knockouts grew and developed similarly to WT, but AtFAAH overexpressor lines show markedly enhanced sensitivity to ABA. When low levels of NAE and ABA, which have very little effect on growth alone, were combined, there was a dramatic reduction in seedling growth in all three genotypes, indicating a synergistic interaction between ABA and NAE. Notably, this synergistic arrest of seedling growth was partially reversed in the ABA insensitive (abi) mutant abi3-1, indicating that a functional ABA signaling pathway is required for the full synergistic effect. This synergistic growth arrest results in an increased accumulation of NAEs, but no concomitant increase in ABA levels. The combined NAE and ABA treatment induced a dose-dependent increase in ABI3 transcript levels, which was inversely related to growth. The ABA responsive genes AtHVA22B and RD29B also had increased expression in both NAE and ABA treatment. ...
Contributing Partner: UNT Libraries
Metabolic Engineering of Raffinose-Family Oligosaccharides in the Phloem Reveals Alterations in Patterns of Carbon Partitioning and Enhances Resistance to Green Peach Aphid

Metabolic Engineering of Raffinose-Family Oligosaccharides in the Phloem Reveals Alterations in Patterns of Carbon Partitioning and Enhances Resistance to Green Peach Aphid

Date: August 2010
Creator: Cao, Te
Description: Phloem transport is along hydrostatic pressure gradients generated by differences in solute concentration between source and sink tissues. Numerous species accumulate raffinose-family oligosaccharides (RFOs) in the phloem of mature leaves to accentuate the pressure gradient between source and sinks. In this study, metabolic engineering was used to generate RFOs at the inception of the translocation stream of Arabidopsis thaliana, which transports predominantly sucrose. To do this, three genes, GALACTINOL SYNTHASE, RAFFINOSE SYNTHASE and STACHYOSE SYNTHASE, were expressed from promoters specific to the companion cells of minor veins. Two transgenic lines homozygous for all three genes (GRS63 and GRS47) were selected for further analysis. Sugars were extracted and quantified by high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), and 21-day old plants of both lines had levels of galactinol, raffinose, and stachyose approaching 50% of total soluble sugar. All three exotic sugars were also identified in phloem exudates from excised leaves of transgenic plants whereas levels were negligible in exudates from wild type leaves. Differences in starch accumulation or degradation between wild type and GRS63 and GRS47 lines were not observed. Similarly, there were no differences in vegetative growth between wild type and engineered plants, but engineered plants flowered ...
Contributing Partner: UNT Libraries
Stretching the Flexible Myosin II Subfragment Using the Novel Gravitational Force Spectroscope, and the Uncoiling of S2

Stretching the Flexible Myosin II Subfragment Using the Novel Gravitational Force Spectroscope, and the Uncoiling of S2

Date: May 2010
Creator: Dunn, James W.
Description: Familial Hypertrophic cardiomyopathy (HCM) causes ventricle walls to thicken and often leads to sudden death especially in adults. Mutations in the subfragment 2 (S2) of β-cardiac myosin are implicated in the genetic disorder. This S2 region is a coiled-coil rod region resulting from the dimeric form of myosin II. It has been proposed that an elastic quality allows normal S2 to absorb force during the powerstroke according to the sliding filament model. To test the flexibility of single molecules of S2 against levels of physiological force, the Gravitational Force Spectrometer (GFS) is being developed. This novel system employs a standard microscope on an equatorial mount that allows the spectrometer to be rotated freely in space. Stationary glass beads are attached to a microscope slide where the molecule is tethered between the stationary bead and a smaller mobile bead. The GFS is oriented so that the force of gravity can act on the mobile bead and so impart a small force to the tethered subfragment. Additionally, a video system in conjunction with ImageJ software makes a distance measurement of the molecule possible with a resolution of around 11 nm. The S2 can be stretched parallel or perpendicular to the coiled coil ...
Contributing Partner: UNT Libraries
NSAID effect on prostanoids in fishes: Prostaglandin E2 levels in bluntnose minnows (Pimephales notatus) exposed to ibuprofen.

NSAID effect on prostanoids in fishes: Prostaglandin E2 levels in bluntnose minnows (Pimephales notatus) exposed to ibuprofen.

Date: August 2009
Creator: Bhandari, Khageshor
Description: Prostanoids are oxygenated derivatives of arachidonic acid with a wide range of physiological effects in vertebrates including modulation of inflammation and innate immune responses. Nonsteroidal anti-inflammatory drugs (NSAIDs) act through inhibition of cyclooxygenase (COX) conversion of arachidonic acid to prostanoids. In order to better understand the potential of environmental NSAIDS for interruption of normal levels COX products in fishes, we developed an LC/MS/MS-based approach for tissue analysis of 7 prostanoids. Initial studies examining muscle, gut and gill demonstrated that prostaglandin E2 (PGE2) was the most abundant of the measured prostanoids in all tissues and that gill tissue had the highest and most consistent concentrations of PGE2. After short-term 48-h laboratory exposures to concentrations of 5, 25, 50 and 100 ppb ibuprofen, 50.0ppb and 100.0 ppb exposure concentrations resulted in significant reduction of gill tissue PGE2 concentration by approximately 30% and 80% respectively. The lower exposures did not result in significant reductions when compared to unexposed controls. Measured tissue concentrations of ibuprofen indicated that this NSAID had little potential for bioaccumulation (BCF 1.3) and the IC50 of ibuprofen for inhibition of PGE2 production in gill tissue was calculated to be 0.4 µM. Short-term laboratory exposure to ibuprofen did not result in ...
Contributing Partner: UNT Libraries
Identifying genetic interactions of the spindle checkpoint in Caenorhabditis elegans.

Identifying genetic interactions of the spindle checkpoint in Caenorhabditis elegans.

Date: May 2009
Creator: Stewart, Neil
Description: Faithful segregation of chromosomes is ensured by the spindle checkpoint. If a kinetochore does not correctly attach to a microtubule the spindle checkpoint stops cell cycle progression until all chromosomes are attached to microtubules or tension is experienced while pulling the chromosomes. The C. elegans gene, san-1, is required for spindle checkpoint function and anoxia survival. To further understand the role of san-1 in the spindle checkpoint, an RNAi screen was conducted to identify genetic interactions with san-1. The kinetochore gene hcp-1 identified in this screen, was known to have a genetic interaction with hcp-2. Interestingly, san-1(ok1580);hcp-2(ok1757) had embryonic and larval lethal phenotypes, but the phenotypes observed are less severe compared to the phenotypes of san-1(ok1580);hcp-1(RNAi) animals. Both san-1(ok1580);hcp-1(RNAi) and san-1(ok1580);hcp-2(RNAi) produce eggs that may hatch; but san-1(ok1580):hcp-1(RNAi) larvae do not survive to adulthood due to defects caused by aberrant chromosome segregations during development. Y54G9A.6 encodes the C. elegans homolog of bub-3, and has spindle checkpoint function. In C.elegans, bub-3 has genetic interactions with san-1 and mdf-2. An RNAi screen for genetic interactions with bub-3 identified that F31F6.3 may potentially have a genetic interaction with bub-3. This work provided genetic evidence that hcp-1, hcp-2 and F31F6.2 interact with spindle checkpoint ...
Contributing Partner: UNT Libraries
FLP-mediated conditional loss of an essential gene to facilitate complementation assays

FLP-mediated conditional loss of an essential gene to facilitate complementation assays

Date: December 2007
Creator: Ganesan, Savita
Description: Commonly, when it is desirable to replace an essential gene with an allelic series of mutated genes, or genes with altered expression patterns, the complementing constructs are introduced into heterozygous plants, followed by the selection of homozygous null segregants. To overcome this laborious and time-consuming step, the newly developed two-component system utilizes a site-specific recombinase to excise a wild-type copy of the gene of interest from transformed tissues. In the first component (the first vector), a wild-type version of the gene is placed between target sequences recognized by FLP recombinase from the yeast 2 μm plasmid. This construct is transformed into a plant heterozygous for a null mutation at the endogenous locus, and progeny plants carrying the excisable complementing gene and segregating homozygous knockout at the endogenous locus are selected. The second component (the second vector) carries the experimental gene along with the FLP gene. When this construct is introduced, FLP recombinase excises the complementing gene, leaving the experimental gene as the only functional copy. The FLP gene is driven by an egg apparatus specific enhancer (EASE) to ensure excision of the complementing cDNA in the egg cell and zygote following floral-dip transformation. The utility of this system is being ...
Contributing Partner: UNT Libraries
Gene Expression Profiling of the nip Mutant in Medicago truncatula

Gene Expression Profiling of the nip Mutant in Medicago truncatula

Date: August 2007
Creator: McKethan, Brandon Lee
Description: The study of root nodule symbiosis between nitrogen-fixing bacteria and leguminous plant species is important because of the ability to supplement fixed nitrogen fertilizers and increase plant growth in poor soils. Our group has isolated a mutant called nip in the model legume Medicago truncatula that is defective in nodule symbiosis. The nip mutant (numerous infections with polyphenolics) becomes infected by Sinorhizobium meliloti but then accumulates polyphenolic defense compounds in the nodule and fails to progress to a stage where nitrogen fixation can occur. Analysis of the transcriptome of nip roots prior to inoculation with rhizobia was undertaken using Affymetric Medicago Genome Array microarrays. The total RNA of 5-day old uninoculated seedlings was analyzed in triplicate to screen for the NIP gene based on downregulated transcript levels in the mutant as compared to wild type. Further microarray data was generated from 10 days post inoculation (dpi) nip and wild type plants. Analysis of the most highly downregulated transcripts revealed that the NIP gene was not identifiable based on transcript level. Putative gene function was assigned to transcripts with altered expression patterns in order to characterize the nip mutation phenotypically as inferred from the transcriptome. Functional analysis revealed a large number ...
Contributing Partner: UNT Libraries
Hindrance of the Myosin Power Stroke Posed by the Proximity to the Troponin Complex Identified Using a Novel LRET Fluorescent Nanocircuit

Hindrance of the Myosin Power Stroke Posed by the Proximity to the Troponin Complex Identified Using a Novel LRET Fluorescent Nanocircuit

Date: May 2007
Creator: Coffee Castro-Zena, Pilar G.
Description: A novel luminescence resonance energy transfer (LRET) nanocircuit assay involving a donor and two acceptors in tandem was developed to study the dynamic interaction of skeletal muscle contraction proteins. The donor transmits energy relayed to the acceptors distinguishing myosin subfragment-1 (S1) lever arm orientations. The last acceptor allows the detection of S1's bound near or in between troponin complexes on the thin filament. Additionally, calcium related changes between troponin T and myosin were detected. Based on this data, the troponin complex situated every 7 actin monomers, hinders adjacently bound myosins to complete their power stroke; whereas myosins bound in between troponin complexes undergo complete power strokes.
Contributing Partner: UNT Libraries
N-Acylethanolamine (NAE) profiles change during Arabidopsis thaliana seed germination and seedling growth.

N-Acylethanolamine (NAE) profiles change during Arabidopsis thaliana seed germination and seedling growth.

Date: August 2006
Creator: Wiant, William C.
Description: An understanding of the potential roles as lipid mediators of a family of bioactive metabolites called N-acylethanolamines (NAEs) depends on their accurate identification and quantification. The levels of 18C unsaturated NAEs (e.g. NAE18:2, NAE 18:3, etc.) in wild-type seeds (about 2000 ng/g fw) generally decreased by about 80% during germination and post-germinative growth. In addition, results suggest NAE-degradative fatty acid amide hydrolase (FAAH) expression does not play a major role in normal NAE metabolism as previously thought. Seedlings germinated and grown in the presence of abscisic acid (ABA), an endogenous plant hormone, exhibited growth arrest and secondary dormancy, similar to the treatment of seedlings with exogenous N­lauroylethanolamine (NAE12:0). ABA-mediated growth arrest was associated with higher levels of unsaturated NAEs. Overall, these results are consistent with the concept that NAE metabolism is activated during seed germination and suggest that the reduction in unsaturated NAE levels is under strict temporal control and may be a requirement for normal seed germination and post-germinative growth.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 NEXT LAST