You limited your search to:

 Department: Department of Materials Science and Engineering
 Decade: 2000-2009
 Collection: UNT Theses and Dissertations
Thermophysical, Interfacial and Decomposition Analyses of Polyhydroxyalkanoates introduced against Organic and Inorganic Surfaces

Thermophysical, Interfacial and Decomposition Analyses of Polyhydroxyalkanoates introduced against Organic and Inorganic Surfaces

Date: December 2009
Creator: Dagnon, Koffi Leonard
Description: The development of a "cradle-to-cradle" mindset with both material performance during utilization and end of life disposal is a critical need for both ecological and economic considerations. The main limitation to the use of the biopolymers is their mechanical properties. Reinforcements are therefore a good alternative but disposal concerns then arise. Thus the objective of this dissertation is to investigate a biopolymer nanocomposite where the filler is a synthetically prepared layer double hydroxide (inorganic interface); and a biopolymer paper (organic interface) based coating or laminate. The underlying issues driving performance are the packing density of the biopolymer and the interaction with the reinforcement. Since the polyhydroxyalkanoates or PHAs (the biopolymers used for the manufacture of the nanocomposites and coatings) are semicrystalline materials, the glass transition was investigated using dynamic mechanical analysis (DMA) and dielectric spectroscopy (DES), whereas the melt crystallization, cold crystallization and melting points were investigated using differential scanning calorimetry (DSC). Fourier transform infrared (FTIR) spectroscopy was used to estimate crystallinity in the coated material given the low thermal mass of the PHA in the PHA coating. The significant enhancement of the crystallization rate in the PHA nanocomposite was probed using DSC and polarized optical microscopy (POM) and analyzed ...
Contributing Partner: UNT Libraries
Wettability of Silicon, Silicon Dioxide, and Organosilicate Glass

Wettability of Silicon, Silicon Dioxide, and Organosilicate Glass

Date: December 2009
Creator: Martinez, Nelson
Description: Wetting of a substance has been widely investigated since it has many applications to many different fields. Wetting principles can be applied to better select cleans for front end of line (FEOL) and back end of line (BEOL) cleaning processes. These principles can also be used to help determine processes that best repel water from a semiconductor device. It is known that the value of the dielectric constant in an insulator increases when water is absorbed. These contact angle experiments will determine which processes can eliminate water absorption. Wetting is measured by the contact angle between a solid and a liquid. It is known that roughness plays a crucial role on the wetting of a substance. Different surface groups also affect the wetting of a surface. In this work, it was investigated how wetting was affected by different solid surfaces with different chemistries and different roughness. Four different materials were used: silicon; thermally grown silicon dioxide on silicon; chemically vapor deposited (CVD) silicon dioxide on silicon made from tetraethyl orthosilicate (TEOS); and organosilicate glass (OSG) on silicon. The contact angle of each of the samples was measured using a goniometer. The roughness of the samples was measured by atomic force ...
Contributing Partner: UNT Libraries
Modified epoxy coatings on mild steel: A study of tribology and surface energy.

Modified epoxy coatings on mild steel: A study of tribology and surface energy.

Date: August 2009
Creator: Dutta, Madhuri
Description: A commercial epoxy was modified by adding fluorinated poly (aryl ether ketone) and in turn metal micro powders (Ni, Al, Zn, and Ag) and coated on mild steel. Two curing agents were used; triethylenetetramine (curing temperatures: 30 oC and 70 oC) and hexamethylenediamine (curing temperature: 80 oC). Variation in tribological properties (dynamic friction and wear) and surface energies with varying metal powders and curing agents was evaluated. When cured at 30 oC, friction and wear decreased significantly due to phase separation reaction being favored but increased when cured at 70 oC and 80 oC due to cross linking reaction being favored. There was a significant decrease in surface energies with the addition of modifiers.
Contributing Partner: UNT Libraries
Processing, Structure, and Tribological Property Interrelationships in Sputtered Nanocrystalline ZnO Coatings

Processing, Structure, and Tribological Property Interrelationships in Sputtered Nanocrystalline ZnO Coatings

Date: August 2009
Creator: Tu, Wei-Lun
Description: Solid lubricant coatings with controlled microstructures are good candidates in providing lubricity in moving mechanical assembly applications, such as orthopedics and bearing steels. Nanocrystalline ZnO coatings with a layered wurtzite crystal structure have the potential to function as a lubricious material by its defective structure which is controlled by sputter deposition. The interrelationships between sputtered ZnO, its nanocrystalline structure and its lubricity will be discussed in this thesis. The nanocrystalline ZnO coatings were deposited on silicon substrates and Ti alloys by RF magnetron sputtering with different substrate adhesion layers, direct current biases, and temperatures. X-ray diffraction identified that the ZnO (0002) preferred orientation was necessary to achieve low sliding friction and wear along with substrate biasing. In addition, other analyses such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) were utilized to study the solid lubrication mechanisms responsible for low friction and wear.
Contributing Partner: UNT Libraries
Processing, structure property relationships in polymer layer double hydroxide multifunctional nanocomposites

Processing, structure property relationships in polymer layer double hydroxide multifunctional nanocomposites

Date: August 2009
Creator: Ogbomo, Sunny Minister
Description: Dan Beaty (1937-2002) was a prolific composer, pianist, researcher, educator, and writer. His large compositional output included chamber works, choral works, songs, orchestral pieces, electronic music, and keyboard works. Beaty was well versed in traditional Western music as well as the more avant-garde and perplexing idioms of the twentieth century. Beaty's compositions reflect the many fascinating, if not always popular, musical trends of his time. His music encompasses styles from serial to jazz, shows compositional influences from Arnold Schoenberg to Indonesian music, and demonstrates thought-provoking and highly intellectual craftsmanship. This document explores several of Beaty's songs through a discussion of the composer's life and compositional process. Songs included in this document are Three Weeks Songs, October, November, A Sappho Lyric, Love Song, That Night When Joy Began, and War Lyrics. This document was written to accompany the author's DMA Lecture-Recital at the University of North Texas. Unfortunately, Beaty's vocal music was never published and is mostly unknown. One goal of the project was to initiate interest in Beaty's songs. Through this document, Lecture-Recital, and additional performances, considerable strides have been made to bring Beaty's songs to new audiences throughout the United States. In addition, the author has received permission from ...
Contributing Partner: UNT Libraries
Stimuli-responsive microgels for self-assembled crystalline structures and controlled drug release.

Stimuli-responsive microgels for self-assembled crystalline structures and controlled drug release.

Date: August 2009
Creator: Zhou, Jun
Description: Tissue response to PNIPAM and HPC nanoparticles has been studied by implantation method. The results suggest that both PNIAPM and HPC nanoparticles possess good biocompatibility and they may serve as a good carrier for the applications of controlled delivery. Rheological properties of dispersions of IPN microgels composed of PNIPAM and PAAc have been studied. It is found that the IPN microgel dispersion can undergo a sol-gel transition at temperature above 33°C. In vivo drug release experiments suggest that the gelation procedure creates a diffusion barrier and thus leads to slow release. An emulsion method has been used to grow columnar crystals by mixing PNIPAM microgel dispersions with organic solvents. Effect of both temperature and microgel concentration on formation of columnar crystals has been studied. PNIPAM-co-NMA microgels have been used for the fabrication of crystalline hydrogel films by self-crosslinking microgels. The hydrogel film exhibits an iridescent. The thermally responsive properties and mechanical properties of this film have been studied. Melting temperature (Tm) of colloidal crystals self-assembled with PNIPAM-co-AAc microgels has been investigated as a function of pH, salt concentration and microgel concentration. It is revealed that Tm increases as pH value increases; Tm decreases with increase of salt concentration; Tm increases ...
Contributing Partner: UNT Libraries
Long Term Property Prediction of Polyethylene Nanocomposites

Long Term Property Prediction of Polyethylene Nanocomposites

Date: December 2008
Creator: Shaito, Ali Al-Abed
Description: The amorphous fraction of semicrystalline polymers has long been thought to be a significant contributor to creep deformation. In polyethylene (PE) nanocomposites, the semicrystalline nature of the maleated PE compatibilizer leads to a limited ability to separate the role of the PE in the nanocomposite properties. This dissertation investigates blown films of linear low-density polyethylene (LLDPE) and its nanocomposites with montmorillonite-layered silicate (MLS). Addition of an amorphous ethylene propylene copolymer grafted maleic anhydride (amEP) was utilized to enhance the interaction between the PE and the MLS. The amorphous nature of the compatibilizer was used to differentiate the effect of the different components of the nanocomposites; namely the matrix, the filler, and the compatibilizer on the overall properties. Tensile test results of the nanocomposites indicate that the addition of amEP and MLS separately and together produces a synergistic effect on the mechanical properties of the neat PE Thermal transitions were analyzed using differential scanning calorimetry (DSC) to determine if the observed improvement in mechanical properties is related to changes in crystallinity. The effect of dispersion of the MLS in the matrix was investigated by using a combination of X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Mechanical measurements were correlated to ...
Contributing Partner: UNT Libraries
Structure and Low-temperature Tribology of Lubricious Nanocrystalline ZnO/Al2O3  Nanolaminates and ZrO2 Monofilms Grown by Atomic Layer Deposition

Structure and Low-temperature Tribology of Lubricious Nanocrystalline ZnO/Al2O3 Nanolaminates and ZrO2 Monofilms Grown by Atomic Layer Deposition

Date: December 2008
Creator: Romanes, Maia Castillo
Description: Currently available solid lubricants only perform well under a limited range of environmental conditions. Unlike them, oxides are thermodynamically stable and relatively inert over a broad range of temperatures and environments. However, conventional oxides are brittle at normal temperatures; exhibiting significant plasticity only at high temperatures (>0.5Tmelting). This prevents oxides' use in tribological applications at low temperatures. If oxides can be made lubricious at low temperatures, they would be excellent solid lubricants for a wide range of conditions. Atomic layer deposition (ALD) is a growth technique capable of depositing highly uniform and conformal films in challenging applications that have buried surfaces and high-aspect-ratio features such as microelectromechanical (MEMS) devices where the need for robust solid lubricants is sometimes necessary. This dissertation investigates the surface and subsurface characteristics of ALD-grown ZnO/Al2O3 nanolaminates and ZrO2 monofilms before and after sliding at room temperature. Significant enhancement in friction and wear performance was observed for some films. HRSEM/FIB, HRTEM and ancillary techniques (i.e. SAED, EELS) were used to determine the mechanisms responsible for this enhancement. Contributory characteristics and energy dissipation modes were identified that promote low-temperature lubricity in both material systems.
Contributing Partner: UNT Libraries
Definition of brittleness: Connections between mechanical and tribological properties of polymers.

Definition of brittleness: Connections between mechanical and tribological properties of polymers.

Date: August 2008
Creator: Hagg Lobland, Haley E.
Description: The increasing use of polymer-based materials (PBMs) across all types of industry has not been matched by sufficient improvements in understanding of polymer tribology: friction, wear, and lubrication. Further, viscoelasticity of PBMs complicates characterization of their behavior. Using data from micro-scratch testing, it was determined that viscoelastic recovery (healing) in sliding wear is independent of the indenter force within a defined range of load values. Strain hardening in sliding wear was observed for all materials-including polymers and composites with a wide variety of chemical structures-with the exception of polystyrene (PS). The healing in sliding wear was connected to free volume in polymers by using pressure-volume-temperature (P-V-T) results and the Hartmann equation of state. A linear relationship was found for all polymers studied with again the exception of PS. The exceptional behavior of PS has been attributed qualitatively to brittleness. In pursuit of a precise description of such, a quantitative definition of brittleness has been defined in terms of the elongation at break and storage modulus-a combination of parameters derived from both static and dynamic mechanical testing. Furthermore, a relationship between sliding wear recovery and brittleness for all PBMs including PS is demonstrated. The definition of brittleness may be used as ...
Contributing Partner: UNT Libraries
Advanced Technology for Source Drain Resistance Reduction in Nanoscale FinFETs

Advanced Technology for Source Drain Resistance Reduction in Nanoscale FinFETs

Date: May 2008
Creator: Smith, Casey Eben
Description: Dual gate MOSFET structures such as FinFETs are widely regarded as the most promising option for continued scaling of silicon based transistors after 2010. This work examines key process modules that enable reduction of both device area and fin width beyond requirements for the 16nm node. Because aggressively scaled FinFET structures suffer significantly degraded device performance due to large source/drain series resistance (RS/D), several methods to mitigate RS/D such as maximizing contact area, silicide engineering, and epitaxially raised S/D have been evaluated.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 5 NEXT LAST