You limited your search to:

 Department: Department of Chemistry
 Degree Level: Master's
 Collection: UNT Theses and Dissertations
Exploring Inorganic Catalysis with Electronic Structure Simulations

Exploring Inorganic Catalysis with Electronic Structure Simulations

Access: Use of this item is restricted to the UNT Community.
Date: May 2016
Creator: Karbalaei Khani, Sarah
Description: Organometallic catalysis has attracted significant interest from both industry and academia due to its wide applications in organic synthetic transformations. Example of such transformations include the reaction of a zinc carbenoid with olefins to form cyclopropanes. The first project is a computational study using both density functional and correlated wavefunction methods of the reaction between ethylene and model zinc carbenoid, nitrenoid and oxenoid complexes (L-Zn-E-X, E = CH2, NH or O, L = X = I or Cl). It was shown that cyclopropanation of ethylene with IZnCH2I and aziridination of ethylene with IZnNHI proceed via a single-step mechanism with an asynchronous transition state. The reaction barrier for the aziridination with IZnNHI is lower than that of cyclopropanation. Changing the leaving group of IZnNHI from I to Cl, changes the mechanism of the aziridination reaction to a two-step pathway. The calculation results from the epoxidation with IZnOI and ClZnOCl oxenoids suggest a two-step mechanism for both oxenoids. Another important example of organometallic catalysis is the formation of alkyl arenes from arenes and olefins using transition metal catalysis (olefin hydroarylation). We studied with DFT methods the mechanism of a novel Rh catalyst (FlDAB)Rh(TFA)(η2–C2H4) [FlDAB = N,N’ -bis(pentafluorophenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene; TFA = trifluoroacetate] that converts ...
Contributing Partner: UNT Libraries
Laser Ablation Inductively Coupled Plasma Mass Spectrometry and Raman Spectroscopy Imaging of Biological Tissues

Laser Ablation Inductively Coupled Plasma Mass Spectrometry and Raman Spectroscopy Imaging of Biological Tissues

Date: May 2016
Creator: Gorishek, Emma
Description: Laser Ablation Inductively coupled plasma mass spectrometry (LA-ICP-MS) and Raman spectroscopy are both powerful imaging techniques. Their applications are numerous and extremely potential in the field of biology. In order to improve upon LA-ICP-MS an in-house built cold cell was developed and its effectiveness studied by imaging Brassica napus seeds. To further apply LA-ICP-MS and Raman imaging to the field of entomology a prong gilled mayfly (Ephemeroptera: Leptophlebiidae) from the Róbalo River, located on Navarino Island in Chile, was studied. Analysis of both samples showcased LA-ICP-MS and Raman spectroscopy as effective instruments for imaging trace elements and larger molecules in biological samples respectively.
Contributing Partner: UNT Libraries
Synthesis and Electron Transfer Studies of Supramolecular Triads

Synthesis and Electron Transfer Studies of Supramolecular Triads

Date: May 2016
Creator: Bodenstedt, Kurt
Description: This study expands the role of polythiophenes as an electron donating chromophore within energy harvesting milti-modular donor-acceptor systems. The polythiophene moiety would act as an electron donating spacer group between the donor and acceptor entities, viz., phenothiazine and fulleropyrrolidine, respectively, in the newly synthesized supramolecular triads. The triads 10-{[2,2';5',2"] terthiophene-5-fulleropyrrolidine} phenothiazine and 10-{[2,2'] bithiophene-5-fulleropyrrolidine} phenothiazine were synthesized and characterized through electrochemical and spectroscopic methods to ascertain their structural integrity. the componets of the triads were selected for their established redox parameters. Phenothiazine would act as a secondary donor and would facilitate hole-transfer from the polythiophene primary electron donor, due to its ease of oxidation and yield a long-lived charge separated state. Fulleropyrrolidine would act as an acceptor for ease of reductive capabilities and its ability to hold multiple charges. Finally, occurrence of photoinduced electron transferleading to the anticipated charge separated states is established from advanced transient spectroscopic techniques on these novel supramolecular systems.
Contributing Partner: UNT Libraries
Determination of Solute Descriptors for Illicit Drugs Using Gas Chromatographic Retention Data and Abraham Solvation Model

Determination of Solute Descriptors for Illicit Drugs Using Gas Chromatographic Retention Data and Abraham Solvation Model

Date: August 2015
Creator: Mitheo, Yannick K.
Description: In this experiment, more than one hundred volatile organic compounds were analyzed with the gas chromatograph. Six capillary columns ZB wax plus, ZB 35, TR1MS, TR5, TG5MS and TG1301MS with different polarities have been used for separation of compounds and illicit drugs. The Abraham solvation model has five solute descriptors. The solute descriptors are E, S, A, B, L (or V). Based on the six stationary phases, six equations were constructed as a training set for each of the six columns. The six equations served to calculate the solute descriptors for a set of illicit drugs. Drugs studied are nicotine (S= 0.870, A= 0.000, B= 1.073), oxycodone(S= 2.564. A= 0.286, B= 1.706), methamphetamine (S= 0.297, A= 1.570, B= 1.009), heroin (S=2.224, A= 0.000, B= 2.136) and ketamine (S= 1.005, A= 0.000, B= 1.126). The solute property of Abraham solvation model is represented as a logarithm of retention time, thus the logarithm of experimental and calculated retention times is compared.
Contributing Partner: UNT Libraries
Synthesis of Gold Complexes From Diphosphine Ligands and Screening Reactions of Heterocyclic Acetylacetonato (Acac) Ligands with Transitional Metal Complexes

Synthesis of Gold Complexes From Diphosphine Ligands and Screening Reactions of Heterocyclic Acetylacetonato (Acac) Ligands with Transitional Metal Complexes

Date: August 2015
Creator: Nyamwihura, Rogers
Description: Syntheses of diphosphine gold (I) complexes from gold THT and two ligands, 4, 5-bis (diphenylphosphino)-4-cyclopenten-1, 3-dione (BPCD) and 2,3-bis(diphenylphosphino)-N-phenylmaleimide (BPPM), were done separately. The reactions happened under ice conditions followed by room temperature conditions and produced two diphosphine gold (I) complexes in moderated yield. Spectroscopic results including nuclear magnetic resonance (NMR) and X-ray crystallography were used to study and determine the structures of the products formed. Moreover, X-rays of all newly synthesized diphosphine gold (I) complexes were compared with the known X-ray structures of other phosphine and diphosphine gold (I) complexes. There were direct resemblances in terms of bond length and angle between these new diphosphine gold (I) complex structures and those already published. For instance, the bond lengths and angles from the newly prepared diphosphine gold (I) complexes were similar to those already published. Where there were some deviations in bond angles and length between the newly synthesized structures and those already published, appropriate explanation was given to explain the deviation. Heterocyclic ligands bearing acetylacetonate (ACAC) side arm(s) were prepared from ethyl malonyl chloride and the heterocyclic compounds 8-hydroxylquinoline, Syn-2-peridoxyaldoxime, quinoxalinol and 2, 6-dipyridinylmethanol. The products (heterocyclic ACAC ligands) from these reactions were screened with transition metal carbonyl compounds ...
Contributing Partner: UNT Libraries
Applications of Single Reference Methods to Multi-Reference Problems

Applications of Single Reference Methods to Multi-Reference Problems

Date: May 2015
Creator: Jeffrey, Chris C.
Description: Density functional theory is an efficient and useful method of solving single-reference computational chemistry problems, however it struggles with multi-reference systems. Modifications have been developed in order to improve the capabilities of density functional theory. In this work, density functional theory has been successfully applied to solve multi-reference systems with large amounts of non-dynamical correlation by use of modifications. It has also been successfully applied for geometry optimizations for lanthanide trifluorides.
Contributing Partner: UNT Libraries
Transition Metal Catalyzed Oxidative Cleavage of C-o Bond

Transition Metal Catalyzed Oxidative Cleavage of C-o Bond

Date: May 2015
Creator: Jiaqi, Wang
Description: The focus of this thesis is on C-O bonds activation by transition metal atoms. Lignin is a potential alternative energy resource, but currently is an underused biomass species because of its highly branched structure. To aid in better understanding this species, the oxidative cleavage of the Cβ-O bond in an archetypal arylglycerol β-aryl ether (β–O–4 Linkage) model compound of lignin with late 3d, 4d, and 5d metals was investigated. Methoxyethane was utilized as a model molecule to study the activation of the C-O bond. Binding enthalpies (ΔHb), enthalpy formations (ΔH) and activation enthalpies (ΔH‡) have been studied at 298K to learn the energetic properties in the C-O bond cleavage in methoxyethane. Density functional theory (DFT) has become a common choice for the transition metal containing systems. It is important to select suitable functionals for the target reactions, especially for systems with degeneracies that lead to static correlation effects. A set of 26 density functionals including eight GGA, six meta-GGA, six hybrid-GGA, and six hybrid-meta-GGA were applied in order to investigate the performance of different types of density functionals for transition metal catalyzed C-O bond cleavage. A CR-CCSD(T)/aug-cc-pVTZ was used to calibrate the performance of different density functionals.
Contributing Partner: UNT Libraries
Kinetic Investigation of Atomic Hydrogen with Sulfur-containing Species

Kinetic Investigation of Atomic Hydrogen with Sulfur-containing Species

Date: December 2014
Creator: Kerr, Katherine Elaine
Description: The reactions of atomic hydrogen with methanethiol and that of atomic hydrogen with carbon disulfide were studied experimentally using flash-photolysis resonance-fluorescence techniques. Rate constants were determined over a range of temperatures and pressures, and through analysis and comparison to theoretical work details of the reactions were ascertained.
Contributing Partner: UNT Libraries
Synthesis of Tethering Group on Borylazadipyrromethene Dyes to Apply to Photogalvanic Dye-sensitized Solar Cells

Synthesis of Tethering Group on Borylazadipyrromethene Dyes to Apply to Photogalvanic Dye-sensitized Solar Cells

Access: Use of this item is restricted to the UNT Community.
Date: August 2014
Creator: Park, Eunsol
Description: This is my thesis research on the preparation of borylazadipyrromethene (azaBODIPY) dyes bearing an anchoring group, such as a carboxylic acid group, at the β-pyrrolic position of the azadipyrromethene scaffold. Carboxylate groups form covalent bonds to oxide semiconductors such as TiO2 (n-type) or Cu2O (p-type) in dye-sensitized solar cells (DSCs) or photogalvanic dye-sensitized solar cells (P-DSCs). Oxide-binding azaBODIPY dyes can be used to investigate the rate and mechanism of electron injection from the dyes to the semiconductors. Two different types of azaBODIPY (difluoroboryl and dialkynylboryl) were prepared by following previously developed methods. To convert difluoroborylazaBODIPY to the final dyes having a carboxylic acid in the β-pyrrolic position, several distinct synthetic routes were designed, adopting various reactions, such as halogenation, Sonogashira coupling, Knoevenagel condensation, Grignard reagents, Vilsmeir-Haack, and Steglich esterification. Some of these reactions were successful, but the overall synthesis to the targeted final molecule couldn’t be accomplished. Even though further studies on the synthesis of oxide-binding azaBODIPYs are needed, at least my thesis research suggests what reactions can be implemented to complete this synthesis in the future. Proton NMR (nuclear magnetic resonance) and carbon NMR were commonly used to confirm the synthesized compounds, and sometimes crystallographic information was obtained by ...
Contributing Partner: UNT Libraries
Determination of Molecular Descriptors for Illegal Drugs by Gc-fid Using Abraham Solvation Model

Determination of Molecular Descriptors for Illegal Drugs by Gc-fid Using Abraham Solvation Model

Date: December 2013
Creator: Akhter, Syeda Sabrina
Description: The Abraham solvation parameter model is a good approach for analyzing and predicting biological activities and partitioning coefficients. The general solvation equation has been used to predict the solute property (SP) behavior of drug compounds between biological barriers. Gas chromatography (GC) retention time can be used to predict molecular descriptors, such as E, S, A, B & L for existing and newly developed drug compounds. In this research, six columns of different stationary phases were used to predict the Abraham molecular descriptors more accurately. The six stationary phases used were 5% phenylmethyl polysiloxane, 6% cyanopropylphenyl 94% dimethylpolysiloxane, 5% diphenyl 95% dimethylpolysiloxane, 100% dimethylpolysiloxane, polyethylene glycol and 35% diphenyl 65% dimethylpolysiloxane. Retention times (RT) of 75 compounds have been measured and logarithm of experimental average retention time Ln(RTexp) are calculated. The Abraham solvation model is then applied to predict the process coefficients of these compounds using the literature values of the molecular descriptors (Acree Compilation descriptors). Six correlation equations are built up as a training set for each of the six columns. The six equations are then used to predict the molecular descriptors of the illegal drugs as a test set. This work shows the ability to extract molecular information from ...
Contributing Partner: UNT Libraries
Studies on High Potential Porphyrin-fullerene Supramolecular Dyads

Studies on High Potential Porphyrin-fullerene Supramolecular Dyads

Date: December 2013
Creator: Song, Baiyun
Description: Photoinduced electron transfer in self-assembled via axial coordination porphyrin-fullerene dyads is investigated. Fullerene functionalized with imidazole and fullerenes functionalized with pyridine are chosen as electron acceptors, while zinc pophyrin derivatives are utilized as electron donors. The electron withdrawing ability of halogen atoms make the porphyrin ring electrophilic, which explained the binding of (F20TPP)Zn with fullerene derivatives having the highest binding constant around 105M-1. Another important observation is that the fullerene imidazole binding to zinc pophyrin had higher stability than fullerene pyridine-porphyrin dyad. Computational DFT B3LYP-21G(*) calculations are used to study the geometric and electronic structures. The HOMO and LUMO was found to be located on the porphyrin and fullerene entities, respectively. Photoinduced electron transfer is investigated by the steady-state absorption and emission, differential pulse voltammetry, and nanosecond and femtosecond transient absorption studies. The measurements provided the same conclusion that the increasing number of the halogen atoms on the porphyrin ring leads to the higher binding of porphyrin-fullerene supramolecular dyads and efficient charge separation and charge recombination processes.
Contributing Partner: UNT Libraries
Studies on the Porphyrin and Phthalocyanine Modified on Sno2 Photoelectrochemical Cells

Studies on the Porphyrin and Phthalocyanine Modified on Sno2 Photoelectrochemical Cells

Date: December 2013
Creator: Lin, Chunyu
Description: The world is facing a tough challenge regarding fulfilling human energy needs. Scientists are motivated to find alternative ways to the fossil fuel at a lower cost with little or no environmental pollution. Among the available renewable resources, the solar energy is an alternative energy to fossil fuel. Scientists are engaged in mimicking the photosynthesis to create the new energy devices such as dye sensitized solar cells. The fundamental theory and properties of the dye sensitized solar cells is given in the first chapter. In this research, the application of the different methods for surface alteration of SnO2 with water soluble porphyrins and phthalocyanine is studied. Using optical absorbance and steady state fluorescence studies, the formation of porphyrins and phthalocyanine discuss on the SnO2 surface is shown. Moreover, the different results of photoelectrochemical cells are show on chapter 2 to understand the porphyrin and phthalocyanine modified on SnO2 as electron injector. In summary, the application porphyrin and phthalocyanine of dimers as a broad band capturing photosensitized dye is discussed.
Contributing Partner: UNT Libraries
Substitution Effects of Phenothiazine and Porphyrin Dyes in Dye-sensitized Solar Cells

Substitution Effects of Phenothiazine and Porphyrin Dyes in Dye-sensitized Solar Cells

Date: December 2013
Creator: Hart, Aaron S.
Description: The details of dye sensitized solar cells was explained and phenothiazine and porphyrin based dyes were synthesized for use in DSSCs. DSSCs offer a unique and cost effective method of renewable energy. DSSCs are characterized through various tests, with the overall efficiency, η, bearing the greatest importance. Incident photon to current conversion efficiency, or IPCE, is also another important characterization of DSSCs. Effect of positioning of the cyanoacrylic acid anchoring group on ring periphery of phenothiazine dye on the performance of dye sensitized solar cells (DSSCs) is reported. The performances of the cells are found to be prominent for solar cells made out of Type-1 dyes compared to Type-2 dyes. This trend has been rationalized based on spectral, electrochemical, computational and electrochemical impedance spectroscopy results. Free-base and zinc porphyrins bearing a carboxyl anchoring group at the para, meta, or ortho positions of one of the meso-phenyl rings were synthesized for DSSCs. Photoelectrochemical studies were performed after immobilization of porphyrins onto nanocrystalline TiO2. The performance of DSSCs with the porphyrin anchoring at the para or meta position were found to greatly exceed those in the ortho position. Additionally, zinc porphyrin derivatives outperformed the free-base porphyrin analogs, including better dye regeneration efficiency ...
Contributing Partner: UNT Libraries
Ab Initio and Density Functional Investigation of the Conformer Manifold of Melatonin and a Proposal for a Simple Dft-based Diagnostic for Nondynamical Correlation

Ab Initio and Density Functional Investigation of the Conformer Manifold of Melatonin and a Proposal for a Simple Dft-based Diagnostic for Nondynamical Correlation

Access: Use of this item is restricted to the UNT Community.
Date: August 2013
Creator: Fogueri, Uma
Description: In this work we address two problems in computational chemistry relevant to biomolecular modeling. In the first project, we consider the conformer space of melatonin as a a representative example of “real-life” flexible biomolecules. Geometries for all 52 unique conformers are optimized using spin-component scaled MP2, and then relative energies are obtained at the CCSD (T) level near the complete basis set limit. These are then used to validate a variety of DFT methods with and without empirical dispersion corrections, as well as some lower-level ab initio methods. Basis set convergence is found to be relatively slow due to internal C-H…O and C-H…N contacts. Absent dispersion corrections, many DFT functionals will transpose the two lowest conformers. Dispersion corrections resolve the problem for most functionals. Double hybrids yield particularly good performance, as does MP2.5. In the second project, we propose a simple DFT-based diagnostic for nondynamical correlation effects. Aλ= (1-TAE [ΧλC]/TAE[XC])/λ where TAE is the total atomization energy, XC the “pure” DFT exchange-correlation functional, and ΧλC the corresponding hybrid with 100λ% HF-type exchange. The diagnostic is a good predictor for sensitivity of energetics to the level of theory, unlike most of the wavefunction-based diagnostics. For GGA functionals, Aλ values approaching unity ...
Contributing Partner: UNT Libraries
Synthetic and Structural Chemistry of Ligand-substituted Triosmium Clusters and a Rhenium(i) Complex

Synthetic and Structural Chemistry of Ligand-substituted Triosmium Clusters and a Rhenium(i) Complex

Date: August 2013
Creator: Lin, Chen-Hao
Description: The reaction of 2-[(diphenylphosphino)methyl]-6-methylpyridine (PN) with Os3(CO)12-n(MeCN)n [where n = 0 (1), 1 (2), 2 (3)] has been investigated. Os3(CO)12 reacts with PN in the presence of Me3NO to afford the clusters Os3(CO)11(1-PN) (4) and 1,2-Os3(CO)10(1-PN)2 (5). X-ray diffraction analyses confirm the equatorial coordination of the phosphine(s) in 4 and 5, with the two phosphines in the latter cluster exhibiting a 1,2-trans orientation about the Os-Os vector that contains the two ligands. Treatment of the MeCN-substituted cluster Os3(CO)11(MeCN) and PN (1:1 ratio) in CH2Cl2 gives clusters 4 and 5, in addition to HOs3(η1-Cl)(CO)10(1-PN) (6) as a result of competitive activation of the reaction solvent. Cluster 6 contains 48e- and the diffraction structure reveals the presence of axial chloride and equatorial phosphine ligands which are located on adjacent osmium atoms. The bridging hydride ligand in 6 spans the Cl,P-substituted Os-Os vector. The reaction of Os3(CO)10(MeCN)2 with PN furnishes 5, 6, and 1,1-Os3(CO)10(2-PN) (7) in yields that are dependent on the reagent stoichiometry and reaction solvent. The solid-state structure of 7 confirms the chelation of the PN ligand to a single osmium atom via the pyridine and phosphine moieties at axial and equatorial sites, respectively. The bonding in 7 relative to other ...
Contributing Partner: UNT Libraries
Kinetics of Sulfur: Experimental Study of the Reaction of Atomic Sulfur with Acetylene and Theoretical Study of the Cn + So Potential Energy Surface

Kinetics of Sulfur: Experimental Study of the Reaction of Atomic Sulfur with Acetylene and Theoretical Study of the Cn + So Potential Energy Surface

Date: May 2013
Creator: Ayling, Sean A.
Description: The kinetics of the reaction of atomic sulfur with acetylene (S (3P) + C2H2) were investigated experimentally via the flash photolysis resonance fluorescence method, and the theoretical potential energy surface for the reaction CN + SO was modeled via the density functional and configuration interaction computational methods. Sulfur is of interest in modern chemistry due to its relevance in combustion and atmospheric chemistry, in the Claus process, in soot and diamond-film formation and in astrochemistry. Experimental conditions ranged from 295 – 1015 K and 10 – 400 Torr of argon. Pressure-dependence was shown at all experimental temperatures. The room temperature high-pressure limit second order rate constant was (2.10 ± 0.08) × 10-13 cm3 molecule-1 s-1. The Arrhenius plot of the high-pressure limit rate constants gave an Ea of (11.34 ± 0.03) kJ mol-1 and a pre-exponential factor of (2.14 ± 0.19) × 10-11 cm3 molecule-1 s-1. S (3P) + C2H2 is likely an adduct forming reaction due to pressure-dependence (also supported by a statistical mechanics analysis) which involves intersystem crossing. The potential energy surface for CN + SO was calculated at the B3LYP/6-311G(d) level and refined at the QCISD/6-311G(d) level. The PES was compared to that of the analogous reaction ...
Contributing Partner: UNT Libraries
A New Chromophoric Organic Molecule Toward Improved Molecular Optoelectronic Devices

A New Chromophoric Organic Molecule Toward Improved Molecular Optoelectronic Devices

Access: Use of this item is restricted to the UNT Community.
Date: December 2012
Creator: Halbert, Jason Paul
Description: The characterization of 2,3,6,7,10,11-hexabromotriphenylene, Br6TP, is presented toward its potential use as an n-type organic semiconductor and metal-free room temperature phosphor. The crystal structure shows both anisotropic two-dimensional BrBr interactions and inter-layer ?-stacking interactions. Photophysical characteristics were evaluated using solid-state photoluminescence and diffuse reflectance spectroscopies, revealing significantly red-shifted excitations in the visible region for the yellow solid material (compared to ultraviolet absorption bands for the colorless dilute solutions). Correlation of spectral, electrochemical, and computational data suggest the presence of an n-type semiconducting behavior due to the electron-poor aromatic ring. The material shows excellent thermal stability as demonstrated by thermogravimetric analysis and infrared spectra of a thin film deposited by thermal evaporation. The potential for Br6TP and its analogues toward use in several types of photonic and electronic devices is discussed.
Contributing Partner: UNT Libraries
Design, Synthesis and Screening of Homoleptic and Heteroleptic Platinum(ii) Pyridylazolate Complexes for N-type Semiconducting and Light-emitting Devices

Design, Synthesis and Screening of Homoleptic and Heteroleptic Platinum(ii) Pyridylazolate Complexes for N-type Semiconducting and Light-emitting Devices

Access: Use of this item is restricted to the UNT Community.
Date: August 2012
Creator: Oswald, Iain William Herbert
Description: A series of heteroleptic and homoleptic platinum(II) complexes has been synthesized and characterized towards their use in thin film devices such as organic light-emitting diodes (OLEDs) and organic thin film transistors (OTFTs). Pyridylpyrazolate- and pyridyltetrazolate-containing ligands were selected due to their structural rigidity and ease of functionalization. Single-crystal x-ray diffraction studies of two selected heteroleptic complexes show strong aggregation with preferential stacking into vertical columns with a varying degree of overlap of the neighboring square planar molecular units. It is shown that the close proximity of the molecules to one another in the stack increases semiconducting character, phosphorescence quantum yields, and shorter radiative lifetimes. The potential for these materials towards incorporation into high-efficiency doping free white OLEDs (DFW-OLEDs) for solid-state lighting and display applications has been realized and will be expanded upon by present and future embodiments of materials in this thesis.
Contributing Partner: UNT Libraries
Electrochemical Depostion of Bismuth on Ruthenium and Ruthenium Oxide Surfaces

Electrochemical Depostion of Bismuth on Ruthenium and Ruthenium Oxide Surfaces

Date: May 2012
Creator: Taylor, Daniel M.
Description: Cyclic voltammetry experiments were performed to compare the electrodeposition characteristics of bismuth on ruthenium. Two types of electrodes were used for comparison: a Ru shot electrode (polycrystalline) and a thin film of radio-frequency sputtered Ru on a Ti/Si(100) support. Experiments were performed in 1mM Bi(NO3)3/0.5M H2SO4 with switching potentials between -0.25 and 0.55V (vs. KCl sat. Ag/AgCl) and a 20mV/s scan rate. Grazing incidence x-ray diffraction (GIXRD) determined the freshly prepared thin film electrode was hexagonally close-packed. After thermally oxidizing at 600°C for 20 minutes, the thin film adopts the tetragonal structure consistent with RuO2. a hydrated oxide film (RuOx?(H2O)y) was made by holding 1.3V on the surface of the film in H2SO4 for 60 seconds and was determined to be amorphous. Underpotential deposition of Bi was observed on the metallic surfaces and the electrochemically oxidized surface; it was not observed on the thermal oxide.
Contributing Partner: UNT Libraries
Experimental Determination of L, Ostwald Solubility Solute Descriptor for Illegal Drugs By Gas Chromatography and Analysis By the Abraham Model

Experimental Determination of L, Ostwald Solubility Solute Descriptor for Illegal Drugs By Gas Chromatography and Analysis By the Abraham Model

Date: May 2012
Creator: Wang, Zhouxing
Description: The experiment successfully established the mathematical correlations between the logarithm of retention time of illegal drugs with GC system and the solute descriptor L from the Abraham model. the experiment used the method of Gas Chromatography to analyze the samples of illegal drugs and obtain the retention time of each one. Using the Abraham model to calculate and analyze the sorption coefficient of illegal drugs is an effective way to estimate the drugs. Comparison of the experimental data and calculated data shows that the Abraham linear free energy relationship (LFER) model predicts retention behavior reasonably well for most compounds. It can calculate the solute descriptors of illegal drugs from the retention time of GC system. However, the illegal drugs chosen for this experiment were not all ideal for GC analysis. HPLC is the optimal instrument and will be used for future work. HPLC analysis of the illegal drug compounds will allow for the determination of all the solute descriptors allowing one to predict the illegal drugs behavior in various Abraham biological and medical equations. the results can be applied to predict the properties in biological and medical research which the data is difficult to measure. the Abraham model will predict ...
Contributing Partner: UNT Libraries
Incorporating Electrochemistry and X-ray Diffraction Experiments Into an Undergraduate Instrumental Analysis Course

Incorporating Electrochemistry and X-ray Diffraction Experiments Into an Undergraduate Instrumental Analysis Course

Access: Use of this item is restricted to the UNT Community.
Date: May 2012
Creator: Molina, Cathy
Description: Experiments were designed for an undergraduate instrumental analysis laboratory course, two in X-ray diffraction and two in electrochemistry. Those techniques were chosen due their underrepresentation in the Journal of Chemical Education. Paint samples (experiment 1) and pennies (experiment 2) were characterized using x-ray diffraction to teach students how to identify different metals and compounds in a sample. in the third experiment, copper from a penny was used to perform stripping analyses at different deposition times. As the deposition time increases, the current of the stripping peak also increases. the area under the stripping peak gives the number of coulombs passed, which allows students to calculate the mass of copper deposited on the electrode surface. the fourth experiment was on the effects of variable scan rates on a chemical system. This type of experiment gives valuable mechanistic information about the chemical system being studied.
Contributing Partner: UNT Libraries
Electrochemical Quartz Crystal Microbalance Study Of Bismuth Underpotential Deposition On Ruthenium And On Electrochemically Formed Ruthenium Oxide

Electrochemical Quartz Crystal Microbalance Study Of Bismuth Underpotential Deposition On Ruthenium And On Electrochemically Formed Ruthenium Oxide

Date: December 2011
Creator: Lin, Po-Fu
Description: Kinetics and thermodynamics of bismuth (Bi) underpotential deposition (UPD) on ruthenium (Ru) and on electrochemically formed Ru oxide are studied using electrochemical quartz crystal microbalance technique. The Bi UPD and Bi bulk deposition are observed both on Ru and on electrochemically formed Ru oxide electrodes. The anodic peak potential of Bi UPD shifts slightly to positive potential as the scan rate increases. The peak current ratio (IAnode/ICathode) of Bi UPD and Bi bulk increases as the scan rate increases. Bi monolayer coverage calculated from mass (MLMass) and from charge (MLCharge) with scan rates dependent are compared both in Bi UPD region and in Bi bulk region. Stability and oxidation time effects are also investigated. Bi UPD on Ru and on electrochemically formed Ru oxide are quasi-reversible, scan rate independent, oxidation time dependent, and have higher plating efficiency on Ru. However, Bi bulk deposition on Ru and on electrochemically formed Ru oxide are quasi-reversible, scan rate dependent, oxidation time independent, and have higher plating efficiency on electrochemically formed Ru oxide. Both Bi UPD adatoms and Bi bulk are unstable in 0.5M H2SO4.
Contributing Partner: UNT Libraries
Boron Nitride by Atomic Layer Deposition: A Template for Graphene Growth

Boron Nitride by Atomic Layer Deposition: A Template for Graphene Growth

Date: August 2011
Creator: Zhou, Mi
Description: The growth of single and multilayer BN films on several substrates was investigated. A typical atomic layer deposition (ALD) process was demonstrated on Si(111) substrate with a growth rate of 1.1 Å/cycle which showed good agreement with the literature value and a near stoichiometric B/N ratio. Boron nitride films were also deposited by ALD on Cu poly crystal and Cu(111) single crystal substrates for the first time, and a growth rate of ~1ML/ALD cycle was obtained with a B/N ratio of ~2. The realization of a h-BN/Cu heterojunction was the first step towards a graphene/h-BN/Cu structure which has potential application in gateable interconnects.
Contributing Partner: UNT Libraries
Molecular Structure Analyses of Asymmetric Hydrocarbon Liquid Compounds in the Gas Phase Using Chirped-pulse Fourier Transform Microwave Spectroscopy: Acyl Chlorides and Perfluorinated Acyl Chlorides

Molecular Structure Analyses of Asymmetric Hydrocarbon Liquid Compounds in the Gas Phase Using Chirped-pulse Fourier Transform Microwave Spectroscopy: Acyl Chlorides and Perfluorinated Acyl Chlorides

Date: August 2011
Creator: Powoski, Robert A.
Description: Examinations of the effects of (a.) alkyl carbon chain length and (b.) perfluorination of acyl chlorides; propionyl chloride, butyryl chloride, valeroyl chloride, and perfluorinated acyl chlorides; perfluoropropionyl chloride and perfluorobutyryl chloride, are reported and compared using CP-FTMW spectroscopy. All of these molecules are already published in various journals except for valeroyl chloride. The chapters are organized by molecule alkyl chain length and include some background theory. Conformational stability, internal rotation, helicity, and ionic character of the C-Cl bond via the nuclear electric quadrupole coupling constant (χzz) are analyzed. Results show syn, syn-anti/syn-gauche, and syn-anti-anti/syn-gauche-anti stable conformations. Internal rotation was only seen in propionyl chloride. Helicity was not observed. (χzz) was observed to be inert to alkyl chain length, ~ 60 MHz and ~ 65 MHz for the nonfluorinated and fluorinated acyl chlorides. Partial fluorination and varying functional groups are recommended.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 5 NEXT LAST