## You limited your search to:

**Degree Discipline:**Mathematics

**Collection:**UNT Theses and Dissertations

### On the Cohomology of the Complement of a Toral Arrangement

**Date:**August 1999

**Creator:**Sawyer, Cameron Cunningham

**Description:**The dissertation uses a number of mathematical formula including de Rham cohomology with complex coefficients to state and prove extension of Brieskorn's Lemma theorem.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc2198/

### The Computation of Ultrapowers by Supercompactness Measures

**Date:**August 1999

**Creator:**Smith, John C.

**Description:**The results from this dissertation are a computation of ultrapowers by supercompactness measures and concepts related to such measures. The second chapter gives an overview of the basic ideas required to carry out the computations. Included are preliminary ideas connected to measures, and the supercompactness measures. Order type results are also considered in this chapter. In chapter III we give an alternate characterization of 2 using the notion of iterated ordinal measures. Basic facts related to this characterization are also considered here. The remaining chapters are devoted to finding bounds fwith arguments taking place both inside and outside the ultrapowers. Conditions related to the upper bound are given in chapter VI.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc2201/

### A Presentation of Current Research on Partitions of Lines and Space

**Date:**December 1999

**Creator:**Nugen, Frederick T.

**Description:**We present the results from three papers concerning partitions of vector spaces V over the set R of reals and of the set of lines in V.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc2243/

### Infinite Planar Graphs

**Date:**May 2000

**Creator:**Aurand, Eric William

**Description:**How many equivalence classes of geodesic rays does a graph contain? How many bounded automorphisms does a planar graph have? Neimayer and Watkins studied these two questions and answered them for a certain class of graphs. Using the concept of excess of a vertex, the class of graphs that Neimayer and Watkins studied are extended to include graphs with positive excess at each vertex. The results of this paper show that there are an uncountable number of geodesic fibers for graphs in this extended class and that for any graph in this extended class the only bounded automorphism is the identity automorphism.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc2545/

### Maximum-Sized Matroids with no Minors Isomorphic to U2,5, F7, F7¯, OR P7

**Date:**May 2000

**Creator:**Mecay, Stefan Terence

**Description:**Let M be the class of simple matroids which do not contain the 5-point line U2,5 , the Fano plane F7 , the non-Fano plane F7- , or the matroid P7 , as minors. Let h(n) be the maximum number of points in a rank-n matroid in M. We show that h(2)=4, h(3)=7, and h(n)=n(n+1)/2 for n>3, and we also find all the maximum-sized matroids for each rank.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc2514/

### Examples and Applications of Infinite Iterated Function Systems

**Date:**August 2000

**Creator:**Hanus, Pawel Grzegorz

**Description:**The aim of this work is the study of infinite conformal iterated function systems. More specifically, we investigate some properties of a limit set J associated to such system, its Hausdorff and packing measure and Hausdorff dimension. We provide necessary and sufficient conditions for such systems to be bi-Lipschitz equivalent. We use the concept of scaling functions to obtain some result about 1-dimensional systems. We discuss particular examples of infinite iterated function systems derived from complex continued fraction expansions with restricted entries. Each system is obtained from an infinite number of contractions. We show that under certain conditions the limit sets of such systems possess zero Hausdorff measure and positive finite packing measure. We include an algorithm for an approximation of the Hausdorff dimension of limit sets. One numerical result is presented. In this thesis we also explore the concept of positively recurrent function. We use iterated function systems to construct a natural, wide class of such functions that have strong ergodic properties.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc2642/

### A Collapsing Result Using the Axiom of Determinancy and the Theory of Possible Cofinalities

**Date:**May 2001

**Creator:**May, Russell J.

**Description:**Assuming the axiom of determinacy, we give a new proof of the strong partition relation on ω1. Further, we present a streamlined proof that J<λ+(a) (the ideal of sets which force cof Π α < λ) is generated from J<λ+(a) by adding a singleton. Combining these results with a polarized partition relation on ω1

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc2789/

### The Pettis Integral and Operator Theory

**Access:**Use of this item is restricted to the UNT Community.

**Date:**August 2001

**Creator:**Huettenmueller, Rhonda

**Description:**Let (Ω, Σ, µ) be a finite measure space and X, a Banach space with continuous dual X*. A scalarly measurable function f: Ω→X is Dunford integrable if for each x* X*, x*f L1(µ). Define the operator Tf. X* → L1(µ) by T(x*) = x*f. Then f is Pettis integrable if and only if this operator is weak*-to-weak continuous. This paper begins with an overview of this function. Work by Robert Huff and Gunnar Stefansson on the operator Tf motivates much of this paper. Conditions that make Tf weak*-to-weak continuous are generalized to weak*-toweak continuous operators on dual spaces. For instance, if Tf is weakly compact and if there exists a separable subspace D X such that for each x* X*, x*f = x*fχDµ-a.e, then f is Pettis integrable. This nation is generalized to bounded operators T: X* → Y. To say that T is determined by D means that if x*| D = 0, then T (x*) = 0. Determining subspaces are used to help prove certain facts about operators on dual spaces. Attention is given to finding determining subspaces far a given T: X* → Y. The kernel of T and the adjoint T* of T are used ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc2844/

### Hyperspace Topologies

**Date:**August 2001

**Creator:**Freeman, Jeannette Broad

**Description:**In this paper we study properties of metric spaces. We consider the collection of all nonempty closed subsets, Cl(X), of a metric space (X,d) and topologies on C.(X) induced by d. In particular, we investigate the Hausdorff topology and the Wijsman topology. Necessary and sufficient conditions are given for when a particular pseudo-metric is a metric in the Wijsman topology. The metric properties of the two topologies are compared and contrasted to show which also hold in the respective topologies. We then look at the metric space R-n, and build two residual sets. One residual set is the collection of uncountable, closed subsets of R-n and the other residual set is the collection of closed subsets of R-n having n-dimensional Lebesgue measure zero. We conclude with the intersection of these two sets being a residual set representing the collection of uncountable, closed subsets of R-n having n-dimensional Lebesgue measure zero.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc2902/

### Quantization Dimension for Probability Definitions

**Access:**Use of this item is restricted to the UNT Community.

**Date:**December 2001

**Creator:**Lindsay, Larry J.

**Description:**The term quantization refers to the process of estimating a given probability by a discrete probability supported on a finite set. The quantization dimension Dr of a probability is related to the asymptotic rate at which the expected distance (raised to the rth power) to the support of the quantized version of the probability goes to zero as the size of the support is allowed to go to infinity. This assumes that the quantized versions are in some sense ``optimal'' in that the expected distances have been minimized. In this dissertation we give a short history of quantization as well as some basic facts. We develop a generalized framework for the quantization dimension which extends the current theory to include a wider range of probability measures. This framework uses the theory of thermodynamic formalism and the multifractal spectrum. It is shown that at least in certain cases the quantization dimension function D(r)=Dr is a transform of the temperature function b(q), which is already known to be the Legendre transform of the multifractal spectrum f(a). Hence, these ideas are all closely related and it would be expected that progress in one area could lead to new results in another. It would ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3008/

### Topological uniqueness results for the special linear and other classical Lie Algebras.

**Access:**Use of this item is restricted to the UNT Community.

**Date:**December 2001

**Creator:**Rees, Michael K.

**Description:**Suppose L is a complete separable metric topological group (ring, field, etc.). L is topologically unique if the Polish topology on L is uniquely determined by its underlying algebraic structure. More specifically, L is topologically unique if an algebraic isomorphism of L with any other complete separable metric topological group (ring, field, etc.) induces a topological isomorphism. A local field is a locally compact topological field with non-discrete topology. The only local fields (up to isomorphism) are the real, complex, and p-adic numbers, finite extensions of the p-adic numbers, and fields of formal power series over finite fields. We establish the topological uniqueness of the special linear Lie algebras over local fields other than the complex numbers (for which this result is not true) in the context of complete separable metric Lie rings. Along the way the topological uniqueness of all local fields other than the field of complex numbers is established, which is derived as a corollary to more general principles which can be applied to a larger class of topological fields. Lastly, also in the context of complete separable metric Lie rings, the topological uniqueness of the special linear Lie algebra over the real division algebra of quaternions, ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3000/

### Borel Determinacy and Metamathematics

**Date:**December 2001

**Creator:**Bryant, Ross

**Description:**Borel determinacy states that if G(T;X) is a game and X is Borel, then G(T;X) is determined. Proved by Martin in 1975, Borel determinacy is a theorem of ZFC set theory, and is, in fact, the best determinacy result in ZFC. However, the proof uses sets of high set theoretic type (N1 many power sets of ω). Friedman proved in 1971 that these sets are necessary by showing that the Axiom of Replacement is necessary for any proof of Borel Determinacy. To prove this, Friedman produces a model of ZC and a Borel set of Turing degrees that neither contains nor omits a cone; so by another theorem of Martin, Borel Determinacy is not a theorem of ZC. This paper contains three main sections: Martin's proof of Borel Determinacy; a simpler example of Friedman's result, namely, (in ZFC) a coanalytic set of Turing degrees that neither contains nor omits a cone; and finally, the Friedman result.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3061/

### Dimensions in Random Constructions.

**Date:**May 2002

**Creator:**Berlinkov, Artemi

**Description:**We consider random fractals generated by random recursive constructions, prove zero-one laws concerning their dimensions and find their packing and Minkowski dimensions. Also we investigate the packing measure in corresponding dimension. For a class of random distribution functions we prove that their packing and Hausdorff dimensions coincide.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3160/

### Understanding Ancient Math Through Kepler: A Few Geometric Ideas from The Harmony of the World

**Date:**August 2002

**Creator:**Arthur, Christopher

**Description:**Euclid's geometry is well-known for its theorems concerning triangles and circles. Less popular are the contents of the tenth book, in which geometry is a means to study quantity in general. Commensurability and rational quantities are first principles, and from them are derived at least eight species of irrationals. A recently republished work by Johannes Kepler contains examples using polygons to illustrate these species. In addition, figures having these quantities in their construction form solid shapes (polyhedra) having origins though Platonic philosophy and Archimedean works. Kepler gives two additional polyhedra, and a simple means for constructing the “divine” proportion is given.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3269/

### Analysis Of Sequential Barycenter Random Probability Measures via Discrete Constructions

**Date:**December 2002

**Creator:**Valdes, LeRoy I.

**Description:**Hill and Monticino (1998) introduced a constructive method for generating random probability measures with a prescribed mean or distribution on the mean. The method involves sequentially generating an array of barycenters that uniquely defines a probability measure. This work analyzes statistical properties of the measures generated by sequential barycenter array constructions. Specifically, this work addresses how changing the base measures of the construction affects the statististics of measures generated by the SBA construction. A relationship between statistics associated with a finite level version of the SBA construction and the full construction is developed. Monte Carlo statistical experiments are used to simulate the effect changing base measures has on the statistics associated with the finite level construction.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3304/

### Determining Properties of Synaptic Structure in a Neural Network through Spike Train Analysis

**Date:**May 2007

**Creator:**Brooks, Evan

**Description:**A "complex" system typically has a relatively large number of dynamically interacting components and tends to exhibit emergent behavior that cannot be explained by analyzing each component separately. A biological neural network is one example of such a system. A multi-agent model of such a network is developed to study the relationships between a network's structure and its spike train output. Using this model, inferences are made about the synaptic structure of networks through cluster analysis of spike train summary statistics A complexity measure for the network structure is also presented which has a one-to-one correspondence with the standard time series complexity measure sample entropy.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3702/

### Around the Fibonacci Numeration System

**Date:**May 2007

**Creator:**Edson, Marcia Ruth

**Description:**Let 1, 2, 3, 5, 8, … denote the Fibonacci sequence beginning with 1 and 2, and then setting each subsequent number to the sum of the two previous ones. Every positive integer n can be expressed as a sum of distinct Fibonacci numbers in one or more ways. Setting R(n) to be the number of ways n can be written as a sum of distinct Fibonacci numbers, we exhibit certain regularity properties of R(n), one of which is connected to the Euler φ-function. In addition, using a theorem of Fine and Wilf, we give a formula for R(n) in terms of binomial coefficients modulo two.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3676/

### Quantization Of Spin Direction For Solitary Waves in a Uniform Magnetic Field

**Date:**May 2003

**Creator:**Hoq, Qazi Enamul

**Description:**It is known that there are nonlinear wave equations with localized solitary wave solutions. Some of these solitary waves are stable (with respect to a small perturbation of initial data)and have nonzero spin (nonzero intrinsic angular momentum in the centre of momentum frame). In this paper we consider vector-valued solitary wave solutions to a nonlinear Klein-Gordon equation and investigate the behavior of these spinning solitary waves under the inﬂuence of an externally imposed uniform magnetic ﬁeld. We ﬁnd that the only stationary spinning solitary wave solutions have spin parallel or antiparallel to the magnetic ﬁeld direction.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4210/

### Complemented Subspaces of Bounded Linear Operators

**Date:**August 2003

**Creator:**Bahreini Esfahani, Manijeh

**Description:**For many years mathematicians have been interested in the problem of whether an operator ideal is complemented in the space of all bounded linear operators. In this dissertation the complementation of various classes of operators in the space of all bounded linear operators is considered. This paper begins with a preliminary discussion of linear bounded operators as well as operator ideals. Let L(X, Y ) be a Banach space of all bounded linear operator between Banach spaces X and Y , K(X, Y ) be the space of all compact operators, and W(X, Y ) be the space of all weakly compact operators. We denote space all operator ideals by O.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4349/

### The Study of Translation Equivalence on Integer Lattices

**Date:**August 2003

**Creator:**Boykin, Charles Martin

**Description:**This paper is a contribution to the study of countable Borel equivalence relations on standard Borel spaces. We concentrate here on the study of the nature of translation equivalence. We study these known hyperfinite spaces in order to gain insight into the approach necessary to classify certain variables as either being hyperfinite or not. In Chapter 1, we will give the basic definitions and examples of spaces used in this work. The general construction of marker sets is developed in this work. These marker sets are used to develop several invariant tilings of the equivalence classes of specific variables . Some properties that are equivalent to hyperfiniteness in the certain space are also developed. Lastly, we will give the new result that there is a continuous injective embedding from certain defined variables.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4345/

### A Detailed Proof of the Prime Number Theorem for Arithmetic Progressions

**Date:**May 2004

**Creator:**Vlasic, Andrew

**Description:**We follow a research paper that J. Elstrodt published in 1998 to prove the Prime Number Theorem for arithmetic progressions. We will review basic results from Dirichlet characters and L-functions. Furthermore, we establish a weak version of the Wiener-Ikehara Tauberian Theorem, which is an essential tool for the proof of our main result.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4476/

### Spaces of Compact Operators

**Access:**Use of this item is restricted to the UNT Community.

**Date:**May 2004

**Creator:**Ghenciu, Ioana

**Description:**In this dissertation we study the structure of spaces of operators, especially the space of all compact operators between two Banach spaces X and Y. Work by Kalton, Emmanuele, Bator and Lewis on the space of compact and weakly compact operators motivates much of this paper. Let L(X,Y) be the Banach space of all bounded linear operators between Banach spaces X and Y, K(X,Y) be the space of all compact operators, and W(X,Y) be the space of all weakly compact operators. We study problems related to the complementability of different operator ideals (the Banach space of all compact, weakly compact, completely continuous, resp. unconditionally converging) operators in the space of all bounded linear operators. The structure of Dunford-Pettis sets, strong Dunford-Pettis sets, and certain spaces of operators is studied in the context of the injective and projective tensor products of Banach spaces. Bibasic sequences are used to study relative norm compactness of strong Dunford-Pettis sets. Next, we use Dunford-Pettis sets to give sufficient conditions for K(X,Y) to contain c0.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4463/

### Exhaustivity, continuity, and strong additivity in topological Riesz spaces.

**Access:**Use of this item is restricted to the UNT Community.

**Date:**May 2004

**Creator:**Muller, Kimberly O.

**Description:**In this paper, exhaustivity, continuity, and strong additivity are studied in the setting of topological Riesz spaces. Of particular interest is the link between strong additivity and exhaustive elements of Dedekind s-complete Banach lattices. There is a strong connection between the Diestel-Faires Theorem and the Meyer-Nieberg Lemma in this setting. Also, embedding properties of Banach lattices are linked to the notion of strong additivity. The Meyer-Nieberg Lemma is extended to the setting of topological Riesz spaces and uniform absolute continuity and uniformly exhaustive elements are studied in this setting. Counterexamples are provided to show that the Vitali-Hahn-Saks Theorem and the Brooks-Jewett Theorem cannot be extended to submeasures or to the setting of Banach lattices.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4455/

### Thermodynamical Formalism

**Date:**August 2004

**Creator:**Chousionis, Vasileios

**Description:**Thermodynamical formalism is a relatively recent area of pure mathematics owing a lot to some classical notions of thermodynamics. On this thesis we state and prove some of the main results in the area of thermodynamical formalism. The first chapter is an introduction to ergodic theory. Some of the main theorems are proved and there is also a quite thorough study of the topology that arises in Borel probability measure spaces. In the second chapter we introduce the notions of topological pressure and measure theoretic entropy and we state and prove two very important theorems, Shannon-McMillan-Breiman theorem and the Variational Principle. Distance expanding maps and their connection with the calculation of topological pressure cover the third chapter. The fourth chapter introduces Gibbs states and the very important Perron-Frobenius Operator. The fifth chapter establishes the connection between pressure and geometry. Topological pressure is used in the calculation of Hausdorff dimensions. Finally the sixth chapter introduces the notion of conformal measures.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4631/