You limited your search to:

  Partner: UNT Libraries
 Collection: UNT Theses and Dissertations
Electrical Conduction Mechanisms in the Disordered Material System P-type Hydrogenated Amorphous Silicon

Electrical Conduction Mechanisms in the Disordered Material System P-type Hydrogenated Amorphous Silicon

Date: December 2014
Creator: Shrestha, Kiran
Description: The electrical and optical properties of boron doped hydrogenated amorphous silicon thin films (a-Si) were investigated to determine the effect of boron and hydrogen incorporation on carrier transport. The a-Si thin films were grown by plasma enhanced chemical vapor deposition (PECVD) at various boron concentrations, hydrogen dilutions, and at differing growth temperatures. The temperature dependent conductivity generally follows the hopping conduction model. Above a critical temperature, the dominant conduction mechanism is Mott variable range hopping conductivity (M-VRH), where p = ¼, and the carrier hopping depends on energy. However, at lower temperatures, the coulomb interaction between charge carriers becomes important and Efros-Shklosvkii variable hopping (ES-VRH) conduction, where p=1/2, must be included to describe the total conductivity. To correlate changes in electrical conductivity to changes in the local crystalline order, the transverse optical (TO) and transverse acoustic (TA) modes of the Raman spectra were studied to relate changes in short- and mid-range order to the effects of growth temperature, boron, and hydrogen incorporation. With an increase of hydrogen and/or growth temperature, both short and mid-range order improve, whereas the addition of boron results in the degradation of short range order. It is seen that there is a direct correlation between the ...
Contributing Partner: UNT Libraries
Electrical Conductivity in Thin Films

Electrical Conductivity in Thin Films

Date: May 1973
Creator: Meyer, Frederick Otto
Description: This thesis deals with electrical conductivity in thin films. Classical and quantum size effects in conductivity are discussed including some experimental evidence of quantum size effects. The component conductivity along the applied electric field of a thin film in a transverse magnetic field is developed in a density matrix method.
Contributing Partner: UNT Libraries
Electrical resistivity as a measure of change of state in substrates: Design, development and validation of a microprocessor-based system.

Electrical resistivity as a measure of change of state in substrates: Design, development and validation of a microprocessor-based system.

Access: Use of this item is restricted to the UNT Community.
Date: December 2009
Creator: Le, Dong D.
Description: Smart structures are relevant and significant because of their relevance to phenomena such as hazard mitigation, structural health monitoring and energy saving. Electrical resistance could potentially serve as an indicator of structural well-being or damage in the structure. To this end, the development of a microprocessor-based automated resistance measurement system with customized GUI is desired. In this research, a nodal electrical resistance acquisition circuit (NERAC) system was designed. The system hardware interfaces to a laptop, which houses a customized GUI developed using DAQFactory software. Resistance/impedance was measured using DC/AC methods with four-point probes technique, on three substrates. Baseline reading before damage was noted and compared with the resistance measured after damage. The device was calibrated and validated on three different substrates. Resistance measurements were taken from PVDF samples, composite panels and smart concrete. Results conformed to previous work done on these substrates, validating the effective working of the NERAC device.
Contributing Partner: UNT Libraries
Electricity in Rural Areas of North Texas

Electricity in Rural Areas of North Texas

Date: January 1949
Creator: Greathouse, Charles Simmons
Description: "This study shows three things: (1) a precedent for the expenditure of public funds to teach electricity in our public high schools has already been established by the school system in the larger school systems of Texas, (2) the rural families living on electrified farms in the North Texas area want instruction of this type given to the boys and girls in their communities, and (3) both the rural people and the professional people of the North Texas area believe that instruction dealing with the use of electricity and electrical equipment had spread until by 1935 more than twenty-one million homes, about eighty percent of the total in America at that time, were electrified, only eleven American farms out of every 100 had central-station electricity. More than five million American farms lacked electric service. "--leaf 50.
Contributing Partner: UNT Libraries
An Electro- Magneto-static Field for Confinement of Charged Particle Beams and Plasmas

An Electro- Magneto-static Field for Confinement of Charged Particle Beams and Plasmas

Date: May 2014
Creator: Pacheco, Josè L.
Description: A system is presented that is capable of confining an ion beam or plasma within a region that is essentially free of applied fields. An Artificially Structured Boundary (ASB) produces a spatially periodic set of magnetic field cusps that provides charged particle confinement. Electrostatic plugging of the magnetic field cusps enhances confinement. An ASB that has a small spatial period, compared to the dimensions of a confined plasma, generates electro- magneto-static fields with a short range. An ASB-lined volume thus constructed creates an effectively field free region near its center. It is assumed that a non-neutral plasma confined within such a volume relaxes to a Maxwell-Boltzmann distribution. Space charge based confinement of a second species of charged particles is envisioned, where the second species is confined by the space charge of the first non-neutral plasma species. An electron plasma confined within an ASB-lined volume can potentially provide confinement of a positive ion beam or positive ion plasma. Experimental as well as computational results are presented in which a plasma or charged particle beam interact with the electro- magneto-static fields generated by an ASB. A theoretical model is analyzed and solved via self-consistent computational methods to determine the behavior and equilibrium ...
Contributing Partner: UNT Libraries
Electrochemical Deposition of Zinc-Nickel Alloys in Alkaline Solution for Increased Corrosion Resistance.

Electrochemical Deposition of Zinc-Nickel Alloys in Alkaline Solution for Increased Corrosion Resistance.

Access: Use of this item is restricted to the UNT Community.
Date: December 2009
Creator: Conrad, Heidi A.
Description: The optimal conditions for deposition of zinc-nickel alloys onto stainless steel discs in alkaline solutions have been examined. In the past cadmium has been used because it shows good corrosion protection, but other methods are being examined due to the high toxicity and environmental threats posed by its use. Zinc has been found to provide good corrosion resistance, but the corrosion resistance is greatly increased when alloyed with nickel. The concentration of nickel in the deposit has long been a debated issue, but for basic solutions a nickel concentration of 8-15% appears optimal. However, deposition of zinc-nickel alloys from acidic solutions has average nickel concentrations of 12-15%. Alkaline conditions give a more uniform deposition layer, or better metal distribution, thereby a better corrosion resistance. Although TEA (triethanolamine) is most commonly used to complex the metals in solution, in this work I examined TEA along with other complexing agents. Although alkaline solutions have been examined, most research has been done in pH ≥ 12 solutions. However, there has been some work performed in the pH 9.3-9.5 range. This work examines different ligands in a pH 9.3-9.4 range. Direct potential plating and pulse potential plating methods are examined for optimal platings. The ...
Contributing Partner: UNT Libraries
Electrochemical Depostion of Bismuth on Ruthenium and Ruthenium Oxide Surfaces

Electrochemical Depostion of Bismuth on Ruthenium and Ruthenium Oxide Surfaces

Date: May 2012
Creator: Taylor, Daniel M.
Description: Cyclic voltammetry experiments were performed to compare the electrodeposition characteristics of bismuth on ruthenium. Two types of electrodes were used for comparison: a Ru shot electrode (polycrystalline) and a thin film of radio-frequency sputtered Ru on a Ti/Si(100) support. Experiments were performed in 1mM Bi(NO3)3/0.5M H2SO4 with switching potentials between -0.25 and 0.55V (vs. KCl sat. Ag/AgCl) and a 20mV/s scan rate. Grazing incidence x-ray diffraction (GIXRD) determined the freshly prepared thin film electrode was hexagonally close-packed. After thermally oxidizing at 600°C for 20 minutes, the thin film adopts the tetragonal structure consistent with RuO2. a hydrated oxide film (RuOx?(H2O)y) was made by holding 1.3V on the surface of the film in H2SO4 for 60 seconds and was determined to be amorphous. Underpotential deposition of Bi was observed on the metallic surfaces and the electrochemically oxidized surface; it was not observed on the thermal oxide.
Contributing Partner: UNT Libraries
Electrochemical Dissolution of  ZnO Single Crystals

Electrochemical Dissolution of ZnO Single Crystals

Date: January 1970
Creator: Justice, David Dixon
Description: The separation of oxidation-reduction reactions into individual half-cells with a resulting "mixed potential" is well known as a dissolution mechanism for metals; however, the mechanism by which non-conducting crystals lose ions to the solution has been studied only slightly.
Contributing Partner: UNT Libraries
The Electrochemical Properties of the Mercury/lithium Nitrate-potassium Nitrate Eutectic Interface

The Electrochemical Properties of the Mercury/lithium Nitrate-potassium Nitrate Eutectic Interface

Date: August 1968
Creator: Flinn, David R.
Description: The original purpose of this investigation was to attempt to apply the coulostatic method directly to a molten salt system. The inability to duplicate the reported capacity data for this system resulted in an investigation of the probable cause of this discrepancy between the data obtained by these different methods (14, 15).
Contributing Partner: UNT Libraries
Electrochemical Quartz Crystal Microbalance Study Of Bismuth Underpotential Deposition On Ruthenium And On Electrochemically Formed Ruthenium Oxide

Electrochemical Quartz Crystal Microbalance Study Of Bismuth Underpotential Deposition On Ruthenium And On Electrochemically Formed Ruthenium Oxide

Date: December 2011
Creator: Lin, Po-Fu
Description: Kinetics and thermodynamics of bismuth (Bi) underpotential deposition (UPD) on ruthenium (Ru) and on electrochemically formed Ru oxide are studied using electrochemical quartz crystal microbalance technique. The Bi UPD and Bi bulk deposition are observed both on Ru and on electrochemically formed Ru oxide electrodes. The anodic peak potential of Bi UPD shifts slightly to positive potential as the scan rate increases. The peak current ratio (IAnode/ICathode) of Bi UPD and Bi bulk increases as the scan rate increases. Bi monolayer coverage calculated from mass (MLMass) and from charge (MLCharge) with scan rates dependent are compared both in Bi UPD region and in Bi bulk region. Stability and oxidation time effects are also investigated. Bi UPD on Ru and on electrochemically formed Ru oxide are quasi-reversible, scan rate independent, oxidation time dependent, and have higher plating efficiency on Ru. However, Bi bulk deposition on Ru and on electrochemically formed Ru oxide are quasi-reversible, scan rate dependent, oxidation time independent, and have higher plating efficiency on electrochemically formed Ru oxide. Both Bi UPD adatoms and Bi bulk are unstable in 0.5M H2SO4.
Contributing Partner: UNT Libraries