You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Molecular Biology
 Collection: UNT Theses and Dissertations
Linkage of a nitrilase-containing Nit1C gene cluster to cyanide utilization in Pseudomonas fluorescens NCIMB 11764.

Linkage of a nitrilase-containing Nit1C gene cluster to cyanide utilization in Pseudomonas fluorescens NCIMB 11764.

Access: Use of this item is restricted to the UNT Community.
Date: May 2009
Creator: Ghosh, Pallab
Description: Pseudomonas fluorescens NCIMB 11764 (Pf11764) is uniquely able to grow on the poison cyanide as its sole nitrogen source. It does so by converting cyanide oxidatively to carbon dioxide and ammonia, the latter being assimilated into cellular molecules. This requires a complex enzymatic machinery that includes nitrilase and oxygenase enzymes the nature of which are not well understood. In the course of a proteomics analysis aimed at achieving a better understanding of the proteins that may be required for cyanide degradation by Pf11764, an unknown protein of 17.8 kDa was detected in cells exposed to cyanide. Analysis of this protein by ESI-coupled mass spectrometry and bioinformatics searches gave evidence of strong homology with a protein (Hyp1) of unknown function (hypothetical) present in the bacterium Photorhabdus luminescens subsp. laumondii TTO1 (locus plu_1232). A search of available microbial genomes revealed a number of Hyp1 orthologs the genes of which are found in a conserved gene cluster known as Nit1C. Independent studies revealed that in addition to Hyp1, Pf11764 possesses a gene (nit) specifying a nitrilase enzyme whose closest homologue is a nitrilase found in Nit1C gene clusters (77% amino acid identity). DNA sequence analysis has further revealed that indeed, hyp1Pf11764 and nitPf11764 ...
Contributing Partner: UNT Libraries
Map-based cloning of the NIP gene in model legume Medicago truncatula.

Map-based cloning of the NIP gene in model legume Medicago truncatula.

Date: May 2007
Creator: Morris, Viktoriya
Description: Large amounts of industrial fertilizers are used to maximize crop yields. Unfortunately, they are not completely consumed by plants; consequently, this leads to soil pollution and negative effects on aquatic systems. An alternative to industrial fertilizers can be found in legume plants that provide a nitrogen source that is not harmful for the environment. Legume plants, through their symbiosis with soil bacteria called rhizobia, are able to reduce atmospheric nitrogen into ammonia, a biological nitrogen source. Establishment of the symbiosis requires communication on the molecular level between the two symbionts, which leads to changes on the cellular level and ultimately results in nitrogen-fixing nodule development. Inside the nodules hypoxic environment, the bacterial enzyme nitrogenase reduces atmospheric nitrogen to ammonia. Medicago truncatula is the model legume plant that is used to study symbiosis with mycorrhiza and with the bacteria Sinorhizobium meliloti. The focus of this work is the M. truncatula nodulation mutant nip (numerous infections and polyphenolics). The NIP gene plays a role in the formation and differentiation of nodules, and development of lateral roots. Studying this mutant will contribute knowledge to understanding the plant response to infection and how the invasion by rhizobia is regulated. Previous genetic mapping placed NIP ...
Contributing Partner: UNT Libraries
Microsatellite-based genetic profiling for the management of wild and captive flamingo populations.

Microsatellite-based genetic profiling for the management of wild and captive flamingo populations.

Date: December 2005
Creator: Kapil, Richa
Description: Flamingo species generate tremendous interest whether they are small captive groups or wild populations numbering in the thousands. Genetic pedigrees are invaluable for maintaining maximum genetic diversity in captive, as well as wild, populations. However, presently there is a general lack of genetic data for flamingo populations. Microsatellites are loci composed of 2-6 base pair tandem repeats, scattered throughout higher eukaryotic genomes, often exhibiting high levels of polymorphism and heterozygosity. These loci are thus important genetic markers for identity, parentage and population studies. Here, six microsatellite loci were isolated from a microsatellite-enriched Caribbean flamingo partial genomic library. Two are compound complex repeats and four are perfect trinucleotide repeats. Each locus was amplified from Caribbean, African greater, Chilean and lesser flamingo genomic DNAs. Heterozygosity frequencies were calculated for Caribbean (range 0.12-0.90) and African greater flamingos (range 0.23-0.94) loci. All six microsatellite loci were found to be in Hardy-Weinberg equilibrium and linkage disequilibrium analyses did not suggest linkage for any pair of two greater flamingo subspecies (African and Caribbean) loci. At least five of the loci also exhibit polymorphism in Chilean and lesser flamingos, but due to small sample numbers, relevant allele/heterozygosity frequency calculations could not be estimated. Nucleotide sequence comparisons of ...
Contributing Partner: UNT Libraries
Molecular Basis of Plant Defense Against Aphids: Role of the Arabidopsis Thaliana PAD4 and MPL1 Genes

Molecular Basis of Plant Defense Against Aphids: Role of the Arabidopsis Thaliana PAD4 and MPL1 Genes

Date: August 2011
Creator: Louis, Joe
Description: Myzus persicae (Sülzer), commonly known as green peach aphid (GPA), utilizes its slender stylet to penetrate the plant tissues intercellularly and consume copious amounts of photoassimilates present in the phloem sap causing extensive damage to host plants. The compatible interaction between GPA and Arabidopsis thaliana enabled us to characterize plant response to aphid infestation. Upon GPA infestation, Arabidopsis PAD4 (PHYTOALEXIN DEFICIENT4) gene modulates premature leaf senescence, which is involved in the programmed degradation of cellular components and the export of nutrients out of the senescing leaf. Senescence mechanism is utilized by plants to limit aphid growth. In addition, PAD4 provides antixenosis (deters insect settling and feeding) and antibiosis (impair aphid fecundity) against GPA and adversely impact sieve element availability to GPA. Basal expression of PAD4 contributes to antibiosis, and the GPA-induced expression of PAD4 contributes to antixenosis. Mutation in the Arabidopsis stearoyl-ACP desaturase encoding SSI2 (suppressor of SALICYLIC ACID [SA] insensitivity2) gene that results in an accelerated cell death phenotype and dwarfing, also conferred heightened antibiosis to GPA. Results of this study indicate that PAD4 is required for the ssi2-mediated enhanced antibiosis to GPA. The PAD4 protein contains conserved Ser, Asp and His residues that form the catalytic triad of ...
Contributing Partner: UNT Libraries
Molecular cloning and analysis of the genes for cotton palmitoyl-acyl carrier protein thioesterase (PATE) and Δ-12 fatty acid desaturase (FAD2-3) and construction of sense and anti-sense PATE plasmid vectors for altering oilseed composition of transgenic cotton plants.

Molecular cloning and analysis of the genes for cotton palmitoyl-acyl carrier protein thioesterase (PATE) and Δ-12 fatty acid desaturase (FAD2-3) and construction of sense and anti-sense PATE plasmid vectors for altering oilseed composition of transgenic cotton plants.

Date: May 2002
Creator: Nampaisansuk, Mongkol
Description: A cotton PATE cDNA clone has a 1.7-kb insert with an coding region for 410 amino acids, lacking codons for the three N-terminal amino acids. The predicted amino acid sequence of the PATE preprotein has a characteristic stromal-targeting domain and a 63% identity to the Arabidopsis FatB1 thioesterase sequence. A cotton genomic clone containing a 17.4-kb DNA segment was found to encompass a palmitoyl-ACP thioesterase (FatB1) gene. The gene spans 3.6 kb with six exons and five introns. The six exons are identical in nucleotide sequence to the open reading frame of the corresponding cDNA, and would encode a preprotein of 413 amino acids. The preprotein is identified as a FatB thioesterase from its deduced amino acid sequence similarity to those of other FatB thioesterase preproteins. A 5'-flanking region of 914 bp was sequenced, with the potential promoter/enhancer elements including basic helix-loop-helix elements (E box). Alkaline blot hybridization of cotton genomic DNA suggests the presence at least two FatB1 thioesterase genes in cotton. Four plasmid constructs for both constitutive and seed-specific anti-sense RNA suppression and gene-transgene co- suppression of PATE gene expression were successfully generated. Two overlapping cotton genomic clones were found to encompass a Δ-12 fatty acid desaturase (FAD2-3) ...
Contributing Partner: UNT Libraries
Multiple Activities of Aspartate Transcarbamoylase in Burkholderia cepacia: Requirement for an Active Dihydroorotase for Assembly into the Dodecameric Holoenzyme

Multiple Activities of Aspartate Transcarbamoylase in Burkholderia cepacia: Requirement for an Active Dihydroorotase for Assembly into the Dodecameric Holoenzyme

Date: December 2010
Creator: Kim, Hyunju
Description: The aspartate transcarbamoylase (ATCase) was purified from Burkholderia cepacia 25416. In the course of purification, three different ATCase activities appeared namely dodecameric 550 kDa holoenzyme, and two trimeric ATCases of 140 kDa (consists of 47 kDa PyrB subunits) and 120 kDa (consists of 40 kDa PyrB subunits) each. The 120 kDa PyrB polypeptide arose by specific cleavage of the PyrB polypeptide between Ser74 and Val75 creating an active polypeptide short by 74 amino acids. Both the 40 and 47 kDa polypeptides produced active trimers. To compare the enzyme activity of these trimers, an effector assay using nucleotides was performed. The 140 kDa trimer showed inhibition while the 120 kDa polypeptide showed less inhibition. To verify the composition of the pyrBC holoenzyme complex, B. cepacia dihydroorotase (DHOase, subunit size of 45 kDa) was purified by the pMAL protein fusion and purification system and holoenzyme reconstruction was performed using purified ATCase and DHOase. Both the 140 kDa and the 120 kDa trimers could produce holoenzymes of 550 kDa and 510 kDa, respectively. The reconstructed ATCase holoenzyme from cleaved ATCase showed better reconstruction compared to that from uncleaved ATCase in the conventional ATCase activity gel assay. To characterize the relationship between pyrimidine pathway ...
Contributing Partner: UNT Libraries
Mutagenized HLA DNA Constructs: Tools for Validating Molecular HLA Typing Methodologies

Mutagenized HLA DNA Constructs: Tools for Validating Molecular HLA Typing Methodologies

Date: May 1999
Creator: Schulte, Kathleen Q.
Description: This study describes the development and validation of mutagenized cloned DNA constructs, which correspond to the polymorphic regions of the class II region of the HLA complex. The constructs were used to verify the allelic specificity of primers and probes in polymerase chain reaction (PCR)-based HLA typing assays such as Sequence Specific Primers (SSP) and Sequence Specific Oligonucleotide Probes (SSOP). The constructs consisted of the entire polymorphic region of exon 2 of class II HLA allele sequences that included primer annealing sites or probe hybridization sites. An HLA allele sequence was inserted into a plasmid, cloned, then mutagenized to match a specific HLA allele, and finally, the correct clone was verified by bidirectional sequencing of the insert. Thus, the construct created a cloned reference DNA sample for any specific allele, and can be used to validate the accuracy of various molecular methodologies.
Contributing Partner: UNT Libraries
Mutation Rate Analysis of the Human Mitochondrial D-loop and its Implications for Forensic Identity Testing

Mutation Rate Analysis of the Human Mitochondrial D-loop and its Implications for Forensic Identity Testing

Date: May 2000
Creator: Warren, Joseph E.
Description: To further facilitate mitochondrial DNA (mtDNA) sequence analysis for human identity testing, a better understanding of its mutation rate is needed. Prior to the middle 1990's the mutation rate applied to a forensic or evolutionary analysis was determined by phylogenetic means, This method involved calculating genetic distances as determined by amino acid or DNA sequence variability within or between species. The mutation rate as determined by this method ranged from 0.025-0.26 nucleotide substitutions/ site/ myr (million years). With the recent advent of mtDNA analysis as a tool in human identity testing an increased number of observations have recently come to light calling into question the mutation rate derived from the phylogenetic method. The mutation rate as observed from forensic analysis appears to be much higher than that calculated phylogenetically. This is an area that needs to be resolved in human identity testing. Mutations that occur within a maternal lineage can lead to a possible false exclusion of an individual as belonging to that lineage. A greater understanding of the actual rate of mutation within a given maternal lineage can assist in determining criteria for including or excluding individuals as belonging to that lineage. The method used to assess the mutation ...
Contributing Partner: UNT Libraries
A Novel Mechanism for Site-Directed Mutagenesis of Large Catabolic Plasmids Using Natural Transformation

A Novel Mechanism for Site-Directed Mutagenesis of Large Catabolic Plasmids Using Natural Transformation

Date: August 2001
Creator: Williamson, Phillip C.
Description: Natural transformation is the process by which cells take up DNA from the surrounding medium under physiological conditions, altering the genotype in a heritable fashion. This occurs without chemical or physical treatment of the cells. Certain Acinetobacter strains exhibit a strong tendency to incorporate homologous DNA into their chromosomes by natural transformation. Transformation in Acinetobacter exhibits several unique properties that indicate this system's superiority as a model for transformation studies or studies which benefit from the use of transformation as an experimental method of gene manipulation. Pseudomonas putida is the natural host of TOL plasmids, ranging between 50 kbp and 300 kbp in size and encoding genes for the catabolism of toluene, meta-toluate, and xylene. These very large, single-copy plasmids are difficult to isolate, manipulate, or modify in vitro. In this study, the TOL plasmid pDKR1 was introduced into Acinetobacter calcoaceticus strains and genetically engineered utilizing natural transformation as part of the process. Following engineering by transformation, the recombinant DNA molecule was returned to the native genetic background of the original host P. putida strain. Specific parameters for the successful manipulation of large plasmids by natural transformation in Acinetobacter were identified and are outlined. The effects of growth phase, total ...
Contributing Partner: UNT Libraries
Novel Role of Trypsin in Zebrafish

Novel Role of Trypsin in Zebrafish

Access: Use of this item is restricted to the UNT Community.
Date: May 2013
Creator: Alsrhani, Abdullah Falleh
Description: It has been shown previously in our laboratory that zebrafish produce trypsin from their gills when they are under stress, and this trypsin is involved in thrombocyte activation via PAR2 during gill bleeding. In this study, I investigated another role of the trypsin that is secreted from zebrafish. This investigation has demonstrated a novel role of trypsin in zebrafish. Not only did this investigation demonstrate the role of trypsin in zebrafish behavior, but also it showed that PAR2 might be the receptor that is involved in trypsin-mediated behavioral response. In addition, we have shown that Gq and ERK inhibitors are able to block the trypsin pathway and prevent the escaping behavior. Finally, the results of this investigation suggest that the cells that respond to trypsin are surface cells, which have an appearance similar to that of neuromast cells.
Contributing Partner: UNT Libraries
Nucleotide Sequence Determination, Subcloning, Expression and Characterization of the xy1LT Region of the Pseudomonas putida TOL Plasmid pDK1

Nucleotide Sequence Determination, Subcloning, Expression and Characterization of the xy1LT Region of the Pseudomonas putida TOL Plasmid pDK1

Date: December 1992
Creator: Baker, Ronald F. (Ronald Fredrick)
Description: The complete nucleotide sequence of the region encoding the DHCDH function of the pDK1 lower operon was determined. DNA analysis has shown the presence of two open reading frames, one gene consisting of 777 nucleotides encoding a polypeptide of 27.85 kDa and another gene of 303 nucleotides encoding a polypeptide of 11.13 kDa. The results of enzymatic expression studies suggest that DHCDH activity is associated only with xy1L. However although the addition of xy1T cell-free extracts to xy1L cell-free extracts does not produce an increase in DHCDH activity, subclones carrying both xy1L and xy1T exhibit 300- 400% more DHCDH activity than subclones carrying only xy1L.
Contributing Partner: UNT Libraries
Origin and Role of Factor Viia

Origin and Role of Factor Viia

Access: Use of this item is restricted to the UNT Community.
Date: December 2013
Creator: Khandekar, Gauri
Description: Factor VII, the initiator of the extrinsic coagulation cascade, circulates in human plasma mainly in its zymogen form, Factor VII and in small amounts in its activated form, Factor VIIa. However, the mechanism of initial generation of Factor VIIa is not known despite intensive research using currently available model systems. Earlier findings suggested serine proteases Factor VII activating protease, and hepsin play a role in activating Factor VII, however, it has remained controversial. In this work I estimated the levels of Factor VIIa and Factor VII for the first time in adult zebrafish plasma and also reevaluated the role of the above two serine proteases in activating Factor VII in vivo using zebrafish as a model system. Knockdown of factor VII activating protease did not reduce Factor VIIa levels while hepsin knockdown reduced Factor VIIa levels. After identifying role of hepsin in Factor VII activation in zebrafish, I wanted to identify novel serine proteases playing a role in Factor VII activation. However, a large scale knockdown of all serine proteases in zebrafish genome using available knockdown techniques is prohibitively expensive. Hence, I developed an inexpensive gene knockdown method which was validated with IIb gene knockdown, and knockdown all serine proteases ...
Contributing Partner: UNT Libraries
Photoactivatable Quantum Dots in Super-Resolution Microscopy of Muscle

Photoactivatable Quantum Dots in Super-Resolution Microscopy of Muscle

Date: December 2010
Creator: Akel, Amal
Description: Super-resolution 3D imaging was achieved using newly synthesized photoactivatable quantum dot (PAQ dot) probes. Quantum dots were modified with a novel quencher system to make them photoactivatable. The unique properties of these PAQ dots enable single-fluorophore localization in three dimensions using a confocal microscopy optical sectioning method. Myosin and tropomyosin of rabbit myofibrilar bundles were specifically labeled with the newly synthesized PAQ dot. A sufficient number of single quantum dots were photoactivated, localized and reduced to their centroid and then reconstructed to a super-resolution image. The acquired super-resolution image shows a lateral and an axial sub-diffraction resolution and demonstrates ultrafine striations with widths less than 70 nm that are not evident by conventional confocal microscopy. The striations appear to be related to nebulin thin filament binding protein. This newly developed imaging system is cutting edge for its high resolution and localization as well its simplicity and convenience.
Contributing Partner: UNT Libraries
Physical Map between Marker 8O7 and 146O17 on the Medicago truncatula Linkage Group 1 that Contains the NIP Gene

Physical Map between Marker 8O7 and 146O17 on the Medicago truncatula Linkage Group 1 that Contains the NIP Gene

Date: December 2007
Creator: Lee, Yi-Ching
Description: The Medicago truncatula NIP gene is located on M. truncatula Linkage Group 1. Informative recombinants showed crossovers that localize the NIP gene between markers 146O17 and 23C16D. Marker 164N9 co-segregates with the NIP gene, and the location of marker 164N9 is between markers 146O17 and 23C16D. Based upon data from the Medicago genome sequencing project, a subset of the model legume Medicago truncatula bacterial artificial chromosomes (BACs) were used to create a physical map on the DNA in this genetic internal. BACs near the potential NIP gene location near marker 164N9 were identified, and used in experiments to predict the physical map by a BAC-by-BAC strategy. Using marker 164N9 as a center point, and chromosome walking outward, the physical map toward markers 146O17 and 23C16D was built. The chromosome walk consisted of a virtual walk, made with existing sequence of BACs from the Medicago genome project, hybridizations to filters containing BAC DNA, and PCR reactions to confirm that predicted overlapping BACs contained DNA that yielded similar PCR products. In addition, the primers which are made for physical mapping via PCR could be good genetic markers helpful in discovering the location of the NIP gene. As a result of efforts repotted ...
Contributing Partner: UNT Libraries
A Possible Role of Ascorbate in Boron Deficient Radish (Raphanus sativa L. cv. Cherry Belle)

A Possible Role of Ascorbate in Boron Deficient Radish (Raphanus sativa L. cv. Cherry Belle)

Date: August 2001
Creator: Sedlacek, Theresa D.
Description: The most apparent symptom of boron deficiency in higher plants is a cessation of growth. Deficiency causes a reduction in ascorbate concentration and the absorption of nutrient ions. Addition of ascorbate temporarily relieves deficiency symptoms. In boron sufficient plants the addition of ascorbate to media causes an increased uptake of nutrients. In an attempt to discover if ascorbate addition to deficient plants causes increased ion uptake, radish plants were grown hydroponically in four different strengths of boron solution. A colorimetric assay for phosphorus was performed both before and after supplementation. Results, however, were inconclusive.
Contributing Partner: UNT Libraries
Purification and Characterization of Proteolytic Aspartate Transcarbamoylase (ATCase) from  Burkholderia cepacia 25416 and Construction of a  pyrB1 Knock-out Mutant

Purification and Characterization of Proteolytic Aspartate Transcarbamoylase (ATCase) from Burkholderia cepacia 25416 and Construction of a pyrB1 Knock-out Mutant

Date: December 2004
Creator: Kim, Seongcheol
Description: Burkholderia cepacia is a common soil bacterium of significance in agriculture and bioremediation. B. cepacia is also an opportunistic pathogen of humans causing highly communicable pulmonary infections in cystic fibrosis and immunocompromized patients. The pyrB gene encoding ATCase was cloned and ATCase was purified by the glutathione S-transferase gene fusion system. The ATCase in B. cepacia has been previously classified as a class A enzyme by Bethell and Jones. ATCase activity gels showed that B. cepacia contained a holoenzyme pyrBC complex of 550 kDa comprised of 47 kDa pyrB and 45 kDa pyrC subunits. In the course of purifying the enzyme, trimeric subunits of 140 kDa and 120 kDa were observed as well as a unique proteolysis of the enzyme. The 47 kDa ATCase subunits were cleaved to 40 kDa proteins, which still demonstrated high activity as trimers. The proteolysis site is between Ser74 and Val75 residues. To confirm this, we converted the Ser74 residue to an Ala and to an Arg by site-directed mutagenesis. After this primary sequence changed, the proteolysis of ATCase was not observed. To further investigate the characteristics of B. cepacia pyrB gene, a pyrB knock-out (pyrB-) was constructed by in vitro mutagenesis. In the assay, ...
Contributing Partner: UNT Libraries
Purification of Aspartate Transcarbamoylase from  Moraxella (Branhamella) catarrhalis

Purification of Aspartate Transcarbamoylase from Moraxella (Branhamella) catarrhalis

Date: August 2001
Creator: Stawska, Agnieszka A.
Description: The enzyme, aspartate transcarbamoylase (ATCase) from Moraxella (Branhamella) catarrhalis, has been purified. The holoenzyme has a molecular mass of approximately 510kDa, harbors predominantly positive charges and is hydrophobic in nature. The holoenzyme possesses two subunits, a smaller one of 40 kDa and a larger one of 45 kDa. A third polypeptide has been found to contribute to the overall enzymatic activity, having an approximate mass of 55 kDa. The ATCase purification included the generation of cell-free extract, streptomycin sulfate cut, 60 °C heat step, ammonium sulfate cut, dialysis and ion, gel-filtration and hydrophobic interaction chromatography. The enzyme's performance throughout purification steps was analyzed on activity and SDS-PAGE gradient gels. Its enzymatic, specific activities, yield and fold purification, were also determined.
Contributing Partner: UNT Libraries
Purification of Cyanide-Degrading Nitrilase from Pseudomonas Fluorescens NCIMB 11764.

Purification of Cyanide-Degrading Nitrilase from Pseudomonas Fluorescens NCIMB 11764.

Access: Use of this item is restricted to the UNT Community.
Date: December 2010
Creator: Chou, Chia-Ni
Description: Cyanide is a well known toxicant that arises in the environment from both biological and industrial sources. Bacteria have evolved novel coping mechanisms for cyanide and function as principal agents in the biosphere for cyanide recycling. Some bacteria exhibit the unusual ability of growing on cyanide as the sole nitrogen source. One such organism is Pseudomonas fluorescens NCIMB 11764 (Pf11764) which employs a novel oxidative mechanism for detoxifying and assimilating cyanide. A unique complex of enzymes referred to as cyanide oxygenase (CNO) is responsible for this ability converting cyanide to ammonia which is then assimilated. Because one component of the four member CNO complex was previously shown to act on cyanide independent of the other members, its characterization was sought as a means of gaining a better understanding of the overall catalytic mechanism of the complex. Preliminary studies suggested that the enzyme belonged to a subset of nitrilase enzymes known as cyanide dihydratases (CynD), however, a cynD-like gene in Pf11764 could not be detected by PCR. Instead, a separate nitrilase (Nit) linked to cyanide metabolism was detected. The corresponding nit gene was shown to be one of a conserved set of nit genes traced to a unique cluster in bacteria ...
Contributing Partner: UNT Libraries
Pyrimidine Genes in  Pseudomonas Species

Pyrimidine Genes in Pseudomonas Species

Date: December 2003
Creator: Roush, Wendy A.
Description: This thesis is a comparative study of gene arrangements in Pseudomonas species, and is organized into three major sections. The first section compares gene arrangements for different pathways in Pseudomonas aeruginosa PAO1 to determine if the gene arrangements are similar to previous studies. It also serves as a reference for pyrimidine gene arrangements in P. aeruginosa. The second part compares the physical, and genetic maps of P. aeruginosa PAO1 with the genome sequence. The final section compares pyrimidine gene arrangements in three species of Pseudomonas. Pyrimidine biosynthesis and salvage genes will be aligned for P. aeruginosa PAO1, P. putida KT2440, and P. syringae DC3000. The whole study will gives insight into gene patterns in Pseudomonas, with a focus on pyrimidine genes.
Contributing Partner: UNT Libraries
Regulation, Evolution, and Properties of the ato Qperon and its Gene Products in Escherichia coli

Regulation, Evolution, and Properties of the ato Qperon and its Gene Products in Escherichia coli

Date: August 1993
Creator: Chen, Chaw-Yuan
Description: The regulation of short chain fatty acid metabolism has been examined. Metabolism of acetoacetate, and short chain fatty acids such as butyrate and valerate, is predicated upon the expression of genes of the ato operon. Acetoacetate induces expression of a CoA transferase (encoded by the atoDA genes) and expression of a thiolase (encoded by the atoB gene). Metabolism of saturated short chain fatty acids requires the activities of the transferase and thiolase and enzymes of 6-oxidation as well. Spontaneous mutant strains were isolated that were either constitutive or that were inducible by valerate or butyrate instead of acetoacetate.
Contributing Partner: UNT Libraries
Regulation of Colony-Stimulating Factor-1 Biosynthesis

Regulation of Colony-Stimulating Factor-1 Biosynthesis

Date: May 1990
Creator: Ku, Chun-Ying
Description: Recent studies suggest that synthesis of the Colony-stimulating factor (CSF) is a well regulated process. However, the molecular mechanisms of the signal transduction of the various inducers of CSF such as monokines and lymphokines are not well understood. Using Interleukin 1 (IL-1) stimulation of CSF-1 in the MIA PaCa-2 cell line as a model system, the involvement of G-protein has been studied. The IL-1 induction of CSF-1 synthesis can be inhibited by both Pertussis toxin and Cholera toxin, which are known to modify the Gᵢ and Gₛ proteins respectively, thus activating adenylate cyclase to release more cAMP. The toxin inactivation can be prevented by inhibitors of the ADP-ribosylation such as, benzamide and MBAMG. Addition of dibutyryl-cAMP inhibits the IL-1 induced CSF production. Both Theophylline and Forskolin which increase cAMP by inhibiting phosphodiesterase and stimulating adenylate cyclase respectively, also inhibit CSF-1 production. Results from these studies have shown that cAMP level inversely regulates the biosynthesis of CSF-1. Preincubation of MIA PaCa-2 cells with IL-1 and 5'- guanylylimidodiphosphate (GppNHp) prevents the inhibitory effect of pertussis toxin on CSF-1 production. These data are consistent with the hypothesis that IL-1 binds to its receptor and couples to Gᵢ∝ resulting in the inhibition of adenylate ...
Contributing Partner: UNT Libraries
Regulation of pyrimidine biosynthesis and virulence factor production in wild type, Pyr- and Crc- mutants in Pseudomonas aeruginosa.

Regulation of pyrimidine biosynthesis and virulence factor production in wild type, Pyr- and Crc- mutants in Pseudomonas aeruginosa.

Date: May 2006
Creator: Asfour, Hani
Description: Previous research in our laboratory established that pyrB, pyrC or pyrD knock-out mutants in Pseudomonas aeruginosa required pyrimidines for growth. Each mutant was also discovered to be defective in the production of virulence factors. Moreover, the addition of exogenous uracil did not restore the mutant to wild type virulence levels. In an earlier study using non-pathogenic P. putida, mutants blocked in one of the first three enzymes of the pyrimidine pathway produced no pyoverdine pigment while mutants blocked in the fourth, fifth or sixth steps produced copious quantities of pigment, just like wild type P. putida. The present study explored the correlation between pyrimidine auxotrophy and pigment production in P. aeruginosa. Since the pigment pyoverdine is a siderophore it may also be considered a virulence factor. Other virulence factors tested included casein protease, elastase, hemolysin, swimming, swarming and twitching motilities, and iron binding capacity. In all cases, these virulence factors were significantly decreased in the pyrB, pyrC or pyrD mutants and even in the presence of uracil did not attain wild type levels. In order to complete this comprehensive study, pyrimidine mutants blocked in the fifth (pyrE) and sixth (pyrF) steps of the biosynthetic pathway were examined in P. aeruginosa. ...
Contributing Partner: UNT Libraries
A regulatory role for N-acylethanolamine metabolism in Arabidopsis thaliana seeds and seedlings.

A regulatory role for N-acylethanolamine metabolism in Arabidopsis thaliana seeds and seedlings.

Date: May 2009
Creator: Teaster, Neal D.
Description: N-Acylethanolamines (NAEs) are bioactive acylamides that are present in a wide range of organisms. Because NAE levels in seeds decline during imbibition similar to ABA, a physiological role was predicted for these metabolites in Arabidopsis thaliana seed germination and seedling development. There is also a corresponding increase of AtFAAH (fatty acid amide hydrolase), transcript levels and activity, which metabolizes NAE to ethanolamine and free fatty acids. Based on whole genome microarray studies it was determined that a number of up-regulated genes that were responsive to NAE were also ABA responsive. NAE induced gene expression in these ABA responsive genes without elevating endogenous levels of ABA. It was also determined that many of these NAE/ABA responsive genes were associated with an ABA induced secondary growth arrest, including ABI3. ABI3 is a transcription factor that regulates the transition from embryo to seedling growth, the analysis of transcript levels in NAE treated seedlings revealed a dose dependent, inverse relationship between ABI3 transcript levels and growth, high ABI3 transcript levels were associated with growth inhibition. Similar to ABA, NAE negatively regulated seedling growth within a narrow window of early seedling establishment. When seedlings are exposed to NAE or ABA within the window of sensitivity, ...
Contributing Partner: UNT Libraries
The regulatory roles of PyrR and Crc in pyrimidine metabolism in  Pseudomonas aeruginosa

The regulatory roles of PyrR and Crc in pyrimidine metabolism in Pseudomonas aeruginosa

Date: August 2001
Creator: Patel, Monal V.
Description: The regulatory gene for pyrimidine biosynthesis has been identified and designated pyrR. The pyrR gene product was purified to homogeneity and found to have a monomeric molecular mass of 19 kDa. The pyrR gene is located directly upstream of the pyrBC' genes in the pyrRBC' operon. Insertional mutagenesis of pyrR led to a 50- 70% decrease in the expression of pyrBC', pyrD, pyrE and pyrF while pyrC was unchanged. This suggests that PyrR is a positive activator. The upstream regions of the pyrD, pyrE and pyrF genes contain a common conserved 9 bp sequence to which the purified PyrR protein is proposed to bind. This consensus sequence is absent in pyrC but is present, as an imperfect inverted repeat separated by 11 bp, within the promoter region of pyrR. Gel retardation assays using upstream DNA fragments proved PyrR binds to the DNA of pyrD, pyrE, pyrF as well as pyrR. This suggests that expression of pyrR is autoregulated; moreover, a stable stem-loop structure was determined in the pyrR promoter region such that the SD sequence and the translation start codon for pyrR is sequestered. β-galactosidase activity from transcriptional pyrR::lacZ fusion assays, showed a two-fold in increase when expressed in a ...
Contributing Partner: UNT Libraries