You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Chemistry
 Collection: UNT Theses and Dissertations
The Chemical Analysis of the Mebane Cottonseed Kernel

The Chemical Analysis of the Mebane Cottonseed Kernel

Date: 1941
Creator: Hanna, Alvis Nelson
Description: The purpose of this work is to make a fairly complete chemical analysis of the Mebane 804-50 cottonseed kernel. A brief history of cotton plant and the economic value of its products are also presented.
Contributing Partner: UNT Libraries
A Chemical Analysis of the Peanut

A Chemical Analysis of the Peanut

Date: 1940
Creator: Brown, Carlos L.
Description: The object of this paper is to make an analysis of the mineral and food content of the peanut and to compare them with a balanced food.
Contributing Partner: UNT Libraries
The Chemical Analysis of the Tennessee Green Pod Pole Bean

The Chemical Analysis of the Tennessee Green Pod Pole Bean

Date: 1941
Creator: Mitchell, O. R.
Description: The object of this paper is to compare the Tennessee green pod pole bean with other beans as to chemical composition and food value.
Contributing Partner: UNT Libraries
Chemical Cleavage of Human Phosphoglucose Isomerase at Cysteine

Chemical Cleavage of Human Phosphoglucose Isomerase at Cysteine

Date: December 1975
Creator: Conn, Worth R.
Description: The present study has resulted in the development of a procedure for the specific chemical fragmentation of human phosphoglucose isomerase into a minimal number of peptides. A two-cycle procedure for cleaving the protein with 2-nitro-5- thiocyanobenzoic acid results in four primary peptides and three overlap peptides. The peptides can be readily separated on the basis of their size by using sodium dodecyl sulfate polyacrylamide gel electrophoresis. Preliminary peptide alignments have been considered, and amino acid analyses have been performed. End-terminal analyses of the enzyme revealed a carboxyl terminal sequence of Asp-Val-Gln and a blocked amino terminus. The cysteine cleavage procedure provides an excellent method for the identification and location of specific genetic mutations of human phosphoglucose isomerase.
Contributing Partner: UNT Libraries
Chemical Equilibria in Binary Solvents

Chemical Equilibria in Binary Solvents

Date: August 1997
Creator: McHale, Mary E. R.
Description: Dissertation research involves development of Mobile Order Theory thermodynamic models to mathematically describe and predict the solubility, spectral properties, protonation equilibrium constants and two-phase partitioning behavior of solutes dissolved in binary solvent mixtures of analytical importance. Information gained provide a better understanding of solute-solvent and solvent-solvent interactions at the molecular level, which will facilitate the development of better chemical separation methods based upon both gas-liquid and high-performance liquid chromatography, and better analysis methods based upon complexiometric and spectroscopic methods. Dissertation research emphasizes chemical equilibria in systems containing alcohol cosolvents with the understanding that knowledge gained will be transferable to more environmentally friendly aqueous-organic solvent mixtures.
Contributing Partner: UNT Libraries
A Chemical, Physical, and Biological Investigation of the Total Suspended and Dissolved Substances in Lake Dallas with Emphasis on Sanitation

A Chemical, Physical, and Biological Investigation of the Total Suspended and Dissolved Substances in Lake Dallas with Emphasis on Sanitation

Date: 1942
Creator: Eads, Ewin A.
Description: The purpose of this investigation is to determine the suspended organic matter and the total phosphorus in the waters of Lake Dallas and to evaluate these findings. Since organic matter floating in lakes is largely composed of minute plants, animals, and detritus derived from animals and plants, the fertilizing effect of phosphorus must be considered as an integral part of this problem.
Contributing Partner: UNT Libraries
The Chlorination of Amino Acid in Municipal Waste Effluents

The Chlorination of Amino Acid in Municipal Waste Effluents

Date: July 1977
Creator: Burleson, Jimmie L.
Description: In model reaction systems to test amino acids in chlorinated waste effluents, several amino acids were chlorinated at high chlorine doses. (2000-4000 mg/1). Amino acids present in municipal waste effluents before and after chlorination were concentrated and purified using cation exchange and Chelex resins. After concentration and cleanup of the samples, the amino acids were derivatized by esterification of the acid functional groups and acylation of the amine groups. Identification and quantification of the amino acids and chlorination products was carried out by gas chromatography/mass spectrometry, using a digital computer data system. Analysis of the waste products revealed the presence of new carbon-chlorine bonded derivatives of the amino acid tyrosine when the effluents were treated with heavy doses of chlorine.
Contributing Partner: UNT Libraries
Chlorination of Neohexane

Chlorination of Neohexane

Date: 1947
Creator: Kemplin, J. C.
Description: This thesis describes an experiment to chorinate neohexane, and the resulting compounds.
Contributing Partner: UNT Libraries
Chromatographic and Spectroscopic Studies on Aquatic Fulvic Acid

Chromatographic and Spectroscopic Studies on Aquatic Fulvic Acid

Date: August 1986
Creator: Chang, David Juan-Yuan
Description: High Performance Liquid Chromatography (HPLC) was used to investigate the utility of this technique for the analytical and preparative separation of components of aquatic fulvic acids (FA). Three modes of HPLC namely adsorption, anion exchange and reversed phase were evaluated. Aquatic fulvic acids were either extracted from surface water and sediment samples collected from the Southwest of the U.S., or were provided in a high purity form from the USGS. On the adsorption mode, a major fraction of aquatic fulvic acid was isolated on a semipreparative scale and subjected to Carbon-13 NMR and FAB Mass Spectroscopy. Results indicated that (1) The analyzed fraction of fulvic acid contains more aliphatic than aromatic moieties; (2) Methoxy, carboxylic acids, and esters are well-defined moieties of the macromolecule; (3) Phenolic components of the macromolecules were not detected in the Carbon-13 NMR spectrum possibly because of the presence of stable free radicals. Results of the anion exchange mode have shown that at least three types of acidic functionalities in aquatic fulvic acid can be separated. Results also indicated that aquatic fulvic acid can be progressively fractionated by using subsequent modes of HPLC. Results of reversed phase mode have shown that (1) The fractionation of aquatic ...
Contributing Partner: UNT Libraries
Combined Electrochemistry and Spectroscopy of Complexes and Supramolecules containing Bipyridyl and Other Azabiphenyl Building Blocks

Combined Electrochemistry and Spectroscopy of Complexes and Supramolecules containing Bipyridyl and Other Azabiphenyl Building Blocks

Date: August 1995
Creator: Yang, Lei
Description: A group of azabiphenyl complexes and supramolecules, and their reduced and oxidized forms when possible, were characterized by cyclic voltammetry and electronic absorption spectroscopy. The oxidized and reduced species, if sufficiently stable, were further generated electrochemically inside a specially designed quartz cell with optically transparent electrode, so that the spectra of the electrochemically generated species could be taken in situ. Assignments were proposed for both parent and product electronic spectra. Species investigated included a range of Ru(II) and Pt(II) complexes, as well as catenanes and their comparents. Using the localized electronic model, the electrochemical reduction can be in most cases assigned as azabiphenyl-based, and the oxidation as transition metal-based. This is consistent with the fact that the azabiphenyl compounds have a low lying π* orbital. The electronic absorption spectra of the compounds under study are mainly composed of π —> π* bands with, in some cases, charge transfer bands also.
Contributing Partner: UNT Libraries
Comparison of Homework Systems (Four Web-Based) used in First-Semester General Chemistry

Comparison of Homework Systems (Four Web-Based) used in First-Semester General Chemistry

Date: May 2009
Creator: Belland, Joshua
Description: Web-based homework systems are becoming more common in general chemistry as instructors face ever-increasing enrollment. Yet providing meaningful feedback on assignments remains of the utmost importance. Chemistry instructors consider completion of homework integral to students' success in chemistry, yet only a few studies have compared the use of Web-based systems to the traditional paper-and-pencil homework within general chemistry. This study compares the traditional homework system to four different Web-based systems. Data from eight, semester classes consisting of a diagnostic pre-test, final semester grades, and the number of successful and unsuccessful students are analyzed. Statistically significant results suggest a chemistry instructor should carefully consider options when selecting a homework system.
Contributing Partner: UNT Libraries
A Comparison of the Achievements of Science and Non-Science Majors Enrolled in General Chemistry at North Texas State College

A Comparison of the Achievements of Science and Non-Science Majors Enrolled in General Chemistry at North Texas State College

Date: 1951
Creator: Brogdon, Billie R.
Description: It is the specific purpose of this investigation to determine the difference, if any, in the amount of practical, everyday chemistry learned by the science majors as opposed to the non-science majors enrolled in general chemistry at the North Texas State College during the school year 1950-1951.
Contributing Partner: UNT Libraries
Computational Studies of Bonding and Phosphorescent Properties of Group 12 Oligomers and Extended Excimers.

Computational Studies of Bonding and Phosphorescent Properties of Group 12 Oligomers and Extended Excimers.

Date: August 2008
Creator: Determan, John J.
Description: Density functional (ca, BLYP, BPW91, B3LYP and B3PW91), MP2 and CCSD(T) methods in combination with LANL2DZ or cc-pVxZ-PP (where x=D(double), T(triple) Q(quadruple), and 5(quintuple)) basis sets have been employed in computing electronic transition energies of zinc and cadmium monomers. CCSD(T)/aug-cc-pV5Z-PP combination finds values that are 150 cm-1 from the experimental value for the zinc monomer and 240 cm-1 remove from the cadmium monomer excitation experimental value. These method/basis set combinations are also used to find spectroscopic values (re, De, we, wexe, Be , and Te) that rival experimental values for dimers and excimers. Examples of this can be seen with the CCSD(T)/aug-cc-pV5Z-PP combination phosphorescent emission results. The values found are within 120 cm-1 of the zinc emission energy and 290 cm-1 of the cadmium emission energy. While this combination rigorously models spectroscopic constants for monomers, dimers, and excimers, it does not efficiently model these constants for larger clusters with available modern computational resources. It is important to show spectroscopic trends (bonding, phosphorescent excitation and emissions) as clusters increase as the monomer and dimer emission energies do not model solid state metallophilic interactions and phosphorescence. The MP2/LANL2DZ combinations show qualitative cooperative bonding trends in group oligomers and extended excimers as size ...
Contributing Partner: UNT Libraries
Computational Studies of C–h/c–c Manipulation Utilizing Transition Metal Complexes

Computational Studies of C–h/c–c Manipulation Utilizing Transition Metal Complexes

Date: May 2015
Creator: Pardue, Daniel B.
Description: Density Functional Theory (DFT) is an effective tool for studying diverse metal systems. Presented herein are studies of a variety of metal systems, which can be applied to accomplish transformations that are currently difficult/impossible to achieve. The specific topics studied utilizing DFT include: 1) C–H bond activation via an Earth-abundant transition metal complex, 2) C–H bond deprotonation via an alkali metal superbase, 3) and amination/aziridination reactions utilizing a CuI reagent. Using DFT, the transformation to methanol (CH3OH) from methane (CH4) was examined. The transition metal systems studied for this transformation included a model FeII complex. This first-row transition metal is an economical, Earth-abundant metal. The ligand set for this transformation includes a carbonyl ligand in one set of complexes as well as a phosphite ligand in another. The 3d Fe metal shows the ability to convert alkyls/aryls to their oxidized counterpart in an energetically favorable manner. Also, “superbasic” alkali metal amides were investigated to perform C—H bond cleavage. Toluene was the substrate of interest with Cs chosen to be the metal of interest because of the highly electropositive nature of this alkali metal. These highly electrophilic Cs metal systems allow for very favorable C—H bond scission with a toluene substrate. ...
Contributing Partner: UNT Libraries
Computational Studies of Selected Ruthenium Catalysis Reactions.

Computational Studies of Selected Ruthenium Catalysis Reactions.

Date: December 2007
Creator: Barakat, Khaldoon A.
Description: Computational techniques were employed to investigate pathways that would improve the properties and characteristics of transition metal (i.e., ruthenium) catalysts, and to explore their mechanisms. The studied catalytic pathways are particularly relevant to catalytic hydroarylation of olefins. These processes involved the +2 to +3 oxidation of ruthenium and its effect on ruthenium-carbon bond strengths, carbon-hydrogen bond activation by 1,2-addition/reductive elimination pathways appropriate to catalytic hydrogen/deuterium exchange, and the possible intermediacy of highly coordinatively unsaturated (e.g., 14-electron) ruthenium complexes in catalysis. The calculations indicate a significant decrease in the Ru-CH3 homolytic bond dissociation enthalpy for the oxidation of TpRu(CO)(NCMe)(Me) to its RuIII cation through both reactant destabilization and product stabilization. This oxidation can thus lead to the olefin polymerization observed by Gunnoe and coworkers, since weak RuIII-C bonds would afford quick access to alkyl radical species. Calculations support the experimental proposal of a mechanism for catalytic hydrogen/deuterium exchange by a RuII-OH catalyst. Furthermore, calculational investigations reveal a probable pathway for the activation of C-H bonds that involves phosphine loss, 1,2-addition to the Ru-OH bond and then reversal of these steps with deuterium to incorporate it into the substrate. The presented results offer the indication for the net addition of aromatic C-H ...
Contributing Partner: UNT Libraries
Computational Study of Small Molecule Activation via Low-Coordinate Late First-Row Transition Metal Complexes

Computational Study of Small Molecule Activation via Low-Coordinate Late First-Row Transition Metal Complexes

Date: May 2010
Creator: Pierpont, Aaron
Description: Methane and dinitrogen are abundant precursors to numerous valuable chemicals such as methanol and ammonia, respectively. However, given the robustness of these substrates, catalytically circumventing the high temperatures and pressures required for such transformations has been a challenging task for chemists. In this work, computational studies of various transition metal catalysts for methane C-H activation and N2 activation have been carried out. For methane C-H activation, catalysts of the form LnM=E are studied, where Ln is the supporting ligand (dihydrophosphinoethane or β-diketiminate), E the activating ligand (O, NCH3, NCF3) at which C-H activation takes place, and M the late transition metal (Fe,Co,Ni,Cu). A hydrogen atom abstraction (HAA) / radical rebound (RR) mechanism is assumed for methane functionalization (CH4 à CH3EH). Since the best energetics are found for (β-diket)Ni=O and (β-diket)Cu=O catalysts, with or without CF3 substituents around the supporting ligand periphery, complete methane-to-methanol cycles were studied for such systems, for which N2O was used as oxygen atom transfer (OAT) reagent. Both monometallic and bimetallic OAT pathways are addressed. Monometallic Fe-N2 complexes of various supporting ligands (LnFe-N2) are studied at the beginning of the N2 activation chapter, where the effect of ligand on N2 activation in end-on vs. side-on N2 isomers ...
Contributing Partner: UNT Libraries
A Computational Study on 18+δ Organometallics

A Computational Study on 18+δ Organometallics

Date: May 2002
Creator: Yu, Liwen
Description: The B3LYP density functional has been used to calculate properties of organometallic complexes of Co(CO)3 and ReBr(CO)3, with the chelating ligand 2,3-bisphosphinomaleic anhydride, in 19- and 18-electron forms. The SBKJC-21G effective core potential and associated basis set was used for metals (Co/Re) and the 6-31G* basis set was used for all other elements. The differences of bond angles, bond distances, natural atomic charges and IR vibrational frequencies were compared with the available experimental parameters. The differences between the 19- and 18-electron systems have been analyzed. The results reveal that the 19th electron is mostly distributed over the ligand of 2,3-bisphosphinomaleic anhydride, although partially localized onto the metal fragment in 1 and 2*. Two different methods, IR-frequencies and natural atomic charges, were used to determine the value of δ. Present computed values of δ are compared with available experimental values, and predictions are made for unknown complexes.
Contributing Partner: UNT Libraries
Computer Simulations of Dilute Polymer Solutions: Chain Overlaps and Entanglements

Computer Simulations of Dilute Polymer Solutions: Chain Overlaps and Entanglements

Date: August 1996
Creator: Drewniak, Marta
Description: Chain conformations and the presence of chain overlaps and entanglements in dilute polymer solutions have been analyzed. The fundamental problem of existence of chain overlaps in dilute solutions is related to the drag reduction phenomenon (DR). Even though DR occurs in solutions with the concentration of only few parts per million (ppm), some theories suggest that entanglements may play an important role in DR mechanism. Brownian dynamics technique have been used to perform simulations of dilute polymer solutions at rest and under shear flow. A measure of interchain contacts and two different measures of entanglements have been devised to evaluate the structure of polymer chains in solution. Simulation results have shown that overlaps and entanglements do exist in static dilute solutions as well as in solutions under shear flow. The effect of solution concentration, shear rate and molecular mass have been examined. In agreement with the solvation theory of DR mechanism, simulation results have demonstrated the importance of polymer + polymer interactions in dilute solutions.
Contributing Partner: UNT Libraries
Conformation-Activity Studies of Pyrethroid Alcohols

Conformation-Activity Studies of Pyrethroid Alcohols

Date: August 1984
Creator: Tu, Huai-Tsu
Description: The synthesis and insecticidal activity of certain alcohols (hydroxymethyldibenzofurans, hydroxymethyldibenzothiophenes and some of their ⍺-cyano derivatives), esterified with trans-chrysanthemic acid, were investigated. The preparation of these planar alcohol moieties was undertaken to study conformation-activity effects in insecticides of the pyrethroid type. The synthesis of final ester products employed two methods. One was the direct condensation of the appropriate alcohol with chrysanthemic acid chloride in the presence of pyridine. The other involved the in situ formation of the cyanohydrin from the appropriate aldehyde and subsequent condensation with chrysanthemic acid chloride in the presence of a phase transfer reagent. Insecticidal activity is to be tested at rates of 0.001, 0.01, 0.1, 10, 100, and 1000 ppm. Fenvalerate is used as the standard against Diabrotica undecimpuntata (spotted cucumber beetles).
Contributing Partner: UNT Libraries
Conformational Analogs of Some Phytoactive Compounds

Conformational Analogs of Some Phytoactive Compounds

Date: August 1973
Creator: Skelton, Wm. Paul
Description: In an effort to determine if there is a specific conformational structure which is most effective at the appropriate active physiological site, the synthesis of a group of sterically restricted analogs was undertaken. A portion of the polymethylene carbon skeleton of glutaric acid was replaced by selected aromatic carbons in benzenedicarboxylic acids to produce a series of ridged conformers, and the relative plant growth regulating properties of these derivatives were determined.
Contributing Partner: UNT Libraries
Conformationally Stable Cyclohexyllithium Compounds

Conformationally Stable Cyclohexyllithium Compounds

Date: January 1968
Creator: Selman, Charles Melvin
Description: Organolitnium compounds have been employed in synthetic worK for many years. However only during the last decade has much progress been made in establishing the mechanistic pathways for the reactions of these compounds.
Contributing Partner: UNT Libraries
Copper (II) Complexes with Deprotonated N-(2-hydroxyethyl)ethylenediamine

Copper (II) Complexes with Deprotonated N-(2-hydroxyethyl)ethylenediamine

Date: December 1975
Creator: Miller, Toney G.
Description: This thesis reports the synthesis and characterization of two new copper(II) halide complexes with deprotonated N-(2-hydroxyethyl)ethylenediamine behaving as a bidentate. The magnetic properties of the new copper(II) complexes were studied from room temperature to liquid nitrogen temperatures. The magnetic data show that both complexes exhibit antiferromagnetic interactions with a singlet ground state and a thermally accessible triplet excited state. Magnetic data and infrared spectra indicate the complexes are halogenbridged. Deprotonation at an amine nitrogen is based on the presence of a hydroxyl stretching band in the infrared spectra. Electronic spectra and infrared spectra indicate the complexes are square planar. Elemental analyses, infrared spectra, electronic spectra, electron spin resonance spectra, and magnetic data are reported and discussed.
Contributing Partner: UNT Libraries
The Correlation Between Carbon-Proton and Proton-Proton Coupling Constants

The Correlation Between Carbon-Proton and Proton-Proton Coupling Constants

Date: December 1975
Creator: Seiwell, Ruth R.
Description: The correlation between the carbon-proton and proton-proton coupling constants have been studied in various 13 systems. Isocrotonic acid-carboxyl-3C, crotonic acid- 13 13 carboxyl-3C, and 5-norbornene-2-carboxylic acid-carboxyl-3C- 1,5,6,7,7-hexachloro were synthesized and their carbonproton coupling constants were analyzed. Nmr studies showed the magnitudes of the carbon-proton coupling constants to correlate well with analogous protonproton coupling constants, although the values of the couplings were larger than expected. The geminal olefinic couplings were considerably larger than all other couplings, but they were self-consistent. The signs of the carbon-proton coupling constants also were in agreement without exception with the signs of analogous proton-proton coupling constants.
Contributing Partner: UNT Libraries
Corrosion Inhibition with Quaternary Amines

Corrosion Inhibition with Quaternary Amines

Date: August 1969
Creator: Raiszadeh, Habib
Description: This thesis describes experiments made to test the corrosion inhibition of quaternary amines on steel.
Contributing Partner: UNT Libraries