You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Molecular Biology
 Collection: UNT Theses and Dissertations
Identification and characterization of an incomplete root hair elongation (IRE)-like gene in Medicago truncatula (L.) root nodules.

Identification and characterization of an incomplete root hair elongation (IRE)-like gene in Medicago truncatula (L.) root nodules.

Access: Use of this item is restricted to the UNT Community.
Date: May 2006
Creator: Pislariu, Catalina Iulia
Description: Cloning and molecular characterization of new genes constitutes a useful approach in studying the symbiotic interactions between the model plant Medicago truncatula and Synorhizobium meliloti. Large numbers of expressed sequence tags (ESTs) available for Medicago truncatula, along with numerous cDNA, oligonucleotides, and Affimetrix DNA microarray chips, represent useful tools for gene discovery. In an attempt to identify a new gene that might be involved in the process of nodulation in Medicago truncatula, preliminary data reported by Fedorova et al. (2002), who identified 340 putative gene products or tentative consensus sequences (TCs) expressed only in nodules, was used. This research was focused on TC33166 (TC103185), which has 3 ESTs in the TC, and whose strongest BLASTX hit of TC103185 is the incomplete root hair elongation (IRE) protein kinase-like protein (NP_192429) from Arabidopsis thaliana. The Arabidopsis IRE gene is required for normal root hair growth, and a role in apical growth was suggested (Oyama et al., 2002). Infection thread growth can be looked at as an inward growth of the root hair. Thus, TC103185 was a good candidate for identifying a gene that may be involved in early events of nodulation. MtIRE (GenBank accession AC122727) is organized in 17 exons and 16 ...
Contributing Partner: UNT Libraries
Impaired virulence factor production in a dihydroorotate dehydrogenase mutant (pyrD) of  Pseudomonas aeruginosa.

Impaired virulence factor production in a dihydroorotate dehydrogenase mutant (pyrD) of Pseudomonas aeruginosa.

Date: December 2005
Creator: Ralli, Pooja
Description: Previous research in our laboratory showed that when knockout mutations were created in the pyrB and pyrC genes of the pyrimidine pathway in Pseudomonas aeruginosa, not only were the resultant mutants auxotrophic for pyrimidines but they were also impaired in virulence factor production. Such a correlation had not been previously reported for P. aeruginosa, a ubiquitous opportunistic pathogen in humans. In an earlier study it was reported that mutants blocked in one of the first three enzymes of the pyrimidine pathway in the non-pathogenic strain P. putida M produced no pyoverdin pigment while mutants blocked in the later steps produced copious amounts of pigment, just like the wild type. This study probed for the same connection between pyrimidine auxotrophy and pigment production applied in P. aeruginosa. To that end a knockout mutation was created in pyrD, the fourth step in the pyrimidine pathway which encodes dihydroorotate dehydrogenase. The resulting mutant required pyrimidines for growth but produced wild type pigment levels. Since the pigment pyoverdin is a siderophore it may also be considered a virulence factor, other virulence factors were quantified in the mutant. These included casein protease, hemolysin, elastase, swimming, swarming and twitching motility, and iron binding capacity. In all ...
Contributing Partner: UNT Libraries
Influence of Cholesterol Import on  Aspergillus fumigatus Growth and Antifungal Suscepibility

Influence of Cholesterol Import on Aspergillus fumigatus Growth and Antifungal Suscepibility

Access: Use of this item is restricted to the UNT Community.
Date: December 2003
Creator: Hassan, Saad A.
Description: Invasive pulmonary aspergillosis is a life-threatening fungal infection commonly observed in immunocompromised patients and has a mortality rate approaching 100% once the disease is disseminated. Aspergillus fumigatus is the most common pathogen. Early diagnosis improves the prognosis but is very difficult since most signs and symptoms are nonspecific. Antifungal therapy, usually based on sterol biosynthesis inhibitors, is also of limited efficacy. In my attempts to discover a diagnostic sterol marker for aspergillosis, I observed that A. fumigatus incorporates large amounts of cholesterol from serum-containing medium. This observation suggested the hypothesis that exogenous cholesterol from the host can be imported by A. fumigatus and used as a substitute for ergosterol in the cell membrane. This proposed mechanism would reduce the efficacy of antifungal drugs that act as sterol biosynthesis inhibitors. Experiments to test this hypothesis were designed to determine the effects of serum-free and serum-containing medium on growth of A. fumigatus in the presence and absence of azole antifungal agents. The results showed a marked increase in growth in the presence of human serum. Cultures in media containing cholesterol but no serum also showed enhanced growth, a result indicating that a non-cholesterol component of serum is not primarily responsible for the ...
Contributing Partner: UNT Libraries
Investigating the Ability of Pseudomonas Aeruginosa Pyre Mutants to Grow and Produce Virulence Factors

Investigating the Ability of Pseudomonas Aeruginosa Pyre Mutants to Grow and Produce Virulence Factors

Date: December 2014
Creator: Niazy, Abdurahman A
Description: Pseudomonas aeruginosa are medically important bacteria that are notorious for causing nosocomial infections. To gain more knowledge into understanding how this organism operates, it was decided to explore the pyrimidine biosynthetic pathway. Pyrimidine synthesis, being one half of the DNA structure, makes it a very important pathway to the organism’s survivability. With previous studies being done on various genes in the pathway, pyrE has not been studied to the fullest extent. To study the function of pyrE, a site directed mutagenesis was done to completely knock out pyrE, which encodes the protein orotate phosphoribosyl transferase that is responsible for converting orotate into orotate monophosphate (OMP). A mutation in this step leads to accumulation and secretion of orotate into the medium. Analyzing virulence factors produced by the mutant and comparing to the wild type, some intriguing features of the mutant were discovered. One of the findings was the over expression of virulence factors pyoverdin and pyocyanin. Pyocyanin over expression, based on the results of this study, is due to the accumulation of orotate while over production of pyoverdin is due to the accumulation of dihydroorotate. The other virulence factors studied were motility assays, exoproducts, and growth analysis. All virulence factor production ...
Contributing Partner: UNT Libraries
Investigation of Strategies for Improving STR Typing of Degraded and Low Copy DNA from Human Skeletal Remains and Bloodstains

Investigation of Strategies for Improving STR Typing of Degraded and Low Copy DNA from Human Skeletal Remains and Bloodstains

Date: August 2014
Creator: Ambers, Angie D.
Description: Forensic STR analysis is limited by the quality and quantity of DNA. Significant damage or alteration to the molecular structure of DNA by depurination, crosslinking, base modification, and strand breakage can impact typing success. Two methods that could potentially improve STR typing of challenged samples were explored: an in vitro DNA repair assay (PreCR™ Repair Mix) and whole genome amplification. Results with the repair assay showed trends of improved performance of STR profiling of bleach-damaged DNA. However, the repair assay did not improve DNA profiles from environmentally-damaged bloodstains or bone, and in some cases resulted in lower RFU values for STR alleles. The extensive spectrum of DNA damage and myriad combinations of lesions that can be present in forensic samples appears to pose a challenge for the in vitro PreCR™ assay. The data suggest that the use of PreCR™ in casework should be considered with caution due to the assay’s varied results. As an alternative to repair, whole genome amplification (WGA) was pursued. The DOP-PCR method was selected for WGA because of initial primer design and greater efficacy for amplifying degraded samples. Several modifications of the original DOP-PCR primer were evaluated. These modifications allowed for an overall more robust amplification ...
Contributing Partner: UNT Libraries
Isolation and analysis of cotton genomic clones encompassing a fatty acid desaturase (FAD2) gene

Isolation and analysis of cotton genomic clones encompassing a fatty acid desaturase (FAD2) gene

Date: May 2001
Creator: Kongcharoensuntorn, Wisatre
Description: Polyunsaturated fatty acids are major structural components of plant chloroplast and endoplasmic reticulum membranes. Two fatty acid desaturases (designated FAD2 and FAD3) desaturate 75% of the fatty acids in the endoplasmic reticulum. The w -6 fatty acid desaturase (FAD2) may be responsible for cold acclimation response, since polyunsaturated phospholipids are important in helping maintain plant viability at lowered temperatures. To study regulation of FAD2 gene expression in cotton, a FAD2 gene was isolated from two genomic libraries using an Arabidopsis FAD2 hybridization probe and a cotton FAD2 5¢ -flanking region gene-specific probe, respectively. A cotton FAD2 gene was found to be in two overlapping genomic clones by physical mapping and DNA sequencing. The cloned DNA fragments are identical in size to cotton FAD2 genomic DNA fragments shown by genomic blot hybridization. The cotton FAD2 coding region has 1,155 bp with no introns and would encode a putative polypeptide of 384 amino acids. The cotton FAD2 enzyme has a high identity of 75% with other plant FAD2 enzymes. The enzyme has three histidine-rich motifs that are conserved in all plant membrane desaturases. These histidine boxes may be the iron-binding domains for reduction of oxygen during desaturation. To confirm that this FAD2 ...
Contributing Partner: UNT Libraries
Isolation and Characterization of Polymorphic Loci from the Caribbean Flamingo (Phoenicopterus ruber ruber): New Tools for Wildlife Management

Isolation and Characterization of Polymorphic Loci from the Caribbean Flamingo (Phoenicopterus ruber ruber): New Tools for Wildlife Management

Access: Use of this item is restricted to the UNT Community.
Date: December 2005
Creator: Preston, E. Lynn
Description: Methods to determine genetic diversity and relatedness within populations are essential tools for proper wildlife management. Today the approach of choice is polymerase chain reaction-based microsatellite analysis. Seven new polymorphic loci were isolated from a microsatellite-enriched Caribbean flamingo genomic library and used to characterize survey populations of Caribbean and African greater flamingos. In addition, four of these loci were used to verify parentage relationships within a captive-breeding population of African greater flamingos. Parentage predictions based upon gamekeeper observations of breeding and nesting did not always agree with genetic-based parentage analyses of the nine suggested family groups. Four family groups were supported (groups I, II, III and VI) by there results. However, an analysis of the remaining five suggested groups, with a total of eight offspring/dam and eight offspring/sire suggested relationships, yielded seven exclusions of the suggested dam and six exclusions of the suggested sire. This put the overall suggested dam exclusion rate at 35% and exclusion rate for suggested sires at 29%. Although the keeper observation data for our family groups must be considered a variable of concern at this time, these findings are certainly suggestive that more carefully controlled studies may reveal that flamingos are not monogamous as long ...
Contributing Partner: UNT Libraries
Isolation and Characterization of the Operon Containing Aspartate Transcarbamoylase and Dihydroorotase from Pseudomonas aeruginosa

Isolation and Characterization of the Operon Containing Aspartate Transcarbamoylase and Dihydroorotase from Pseudomonas aeruginosa

Date: May 1993
Creator: Vickrey, John F. (John Fredrick), 1959-
Description: The Pseudomonas aeruginosa ATCase was cloned and sequenced to determine the correct size, subunit composition and architecture of this pivotal enzyme in pyrimidine biosynthesis. During the course of this work, it was determined that the ATCase of Pseudomonas was not 360,000 Da but rather present in a complex of 484,000 Da consisting of two different polypeptides (36,000 Da and 44,000 Da) with an architecture similar to that of E. coli ATCase, 2(C3):3(r2). However, there was no regulatory polypeptide found in the Pseudomonas ATCase.
Contributing Partner: UNT Libraries
Isolation of a  Pseudomonas aeruginosa Aspartate Transcarbamoylase Mutant and the Investigation of Its Growth Characteristics, Pyrimidine Biosynthetic Enzyme Activities, and Virulence Factor Production

Isolation of a Pseudomonas aeruginosa Aspartate Transcarbamoylase Mutant and the Investigation of Its Growth Characteristics, Pyrimidine Biosynthetic Enzyme Activities, and Virulence Factor Production

Date: December 2004
Creator: Hammerstein, Heidi Carol
Description: The pyrimidine biosynthetic pathway is an essential pathway for most organisms. Previous research on the pyrimidine pathway in Pseudomonas aeruginosa (PAO1) has shown that a block in the third step of the pathway resulted in both a requirement for exogenous pyrimidines and decreased ability to produce virulence factors. In this work an organism with a mutation in the second step of the pathway, aspartate transcarbamoylase (ATCase), was created. Assays for pyrimidine intermediates, and virulence factors were performed. Results showed that the production of pigments, haemolysin, and rhamnolipids were significantly decreased from PAO1. Elastase and casein protease production were also moderately decreased. In the Caenorhabditis elegans infection model the nematodes fed the ATCase mutant had increased mortality, as compared to nematodes fed wild type bacteria. These findings lend support to the hypothesis that changes in the pyrimidine biosynthetic pathway contribute to the organism's ability to effect pathogenicity.
Contributing Partner: UNT Libraries
Linkage of a nitrilase-containing Nit1C gene cluster to cyanide utilization in Pseudomonas fluorescens NCIMB 11764.

Linkage of a nitrilase-containing Nit1C gene cluster to cyanide utilization in Pseudomonas fluorescens NCIMB 11764.

Access: Use of this item is restricted to the UNT Community.
Date: May 2009
Creator: Ghosh, Pallab
Description: Pseudomonas fluorescens NCIMB 11764 (Pf11764) is uniquely able to grow on the poison cyanide as its sole nitrogen source. It does so by converting cyanide oxidatively to carbon dioxide and ammonia, the latter being assimilated into cellular molecules. This requires a complex enzymatic machinery that includes nitrilase and oxygenase enzymes the nature of which are not well understood. In the course of a proteomics analysis aimed at achieving a better understanding of the proteins that may be required for cyanide degradation by Pf11764, an unknown protein of 17.8 kDa was detected in cells exposed to cyanide. Analysis of this protein by ESI-coupled mass spectrometry and bioinformatics searches gave evidence of strong homology with a protein (Hyp1) of unknown function (hypothetical) present in the bacterium Photorhabdus luminescens subsp. laumondii TTO1 (locus plu_1232). A search of available microbial genomes revealed a number of Hyp1 orthologs the genes of which are found in a conserved gene cluster known as Nit1C. Independent studies revealed that in addition to Hyp1, Pf11764 possesses a gene (nit) specifying a nitrilase enzyme whose closest homologue is a nitrilase found in Nit1C gene clusters (77% amino acid identity). DNA sequence analysis has further revealed that indeed, hyp1Pf11764 and nitPf11764 ...
Contributing Partner: UNT Libraries