You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Computer Science
 Collection: UNT Theses and Dissertations
Automatic Tagging of Communication Data

Automatic Tagging of Communication Data

Date: August 2012
Creator: Hoyt, Matthew Ray
Description: Globally distributed software teams are widespread throughout industry. But finding reliable methods that can properly assess a team's activities is a real challenge. Methods such as surveys and manual coding of activities are too time consuming and are often unreliable. Recent advances in information retrieval and linguistics, however, suggest that automated and/or semi-automated text classification algorithms could be an effective way of finding differences in the communication patterns among individuals and groups. Communication among group members is frequent and generates a significant amount of data. Thus having a web-based tool that can automatically analyze the communication patterns among global software teams could lead to a better understanding of group performance. The goal of this thesis, therefore, is to compare automatic and semi-automatic measures of communication and evaluate their effectiveness in classifying different types of group activities that occur within a global software development project. In order to achieve this goal, we developed a web-based component that can be used to help clean and classify communication activities. The component was then used to compare different automated text classification techniques on various group activities to determine their effectiveness in correctly classifying data from a global software development team project.
Contributing Partner: UNT Libraries
Autonomic Failure Identification and Diagnosis for Building Dependable Cloud Computing Systems

Autonomic Failure Identification and Diagnosis for Building Dependable Cloud Computing Systems

Date: May 2014
Creator: Guan, Qiang
Description: The increasingly popular cloud-computing paradigm provides on-demand access to computing and storage with the appearance of unlimited resources. Users are given access to a variety of data and software utilities to manage their work. Users rent virtual resources and pay for only what they use. In spite of the many benefits that cloud computing promises, the lack of dependability in shared virtualized infrastructures is a major obstacle for its wider adoption, especially for mission-critical applications. Virtualization and multi-tenancy increase system complexity and dynamicity. They introduce new sources of failure degrading the dependability of cloud computing systems. To assure cloud dependability, in my dissertation research, I develop autonomic failure identification and diagnosis techniques that are crucial for understanding emergent, cloud-wide phenomena and self-managing resource burdens for cloud availability and productivity enhancement. We study the runtime cloud performance data collected from a cloud test-bed and by using traces from production cloud systems. We define cloud signatures including those metrics that are most relevant to failure instances. We exploit profiled cloud performance data in both time and frequency domain to identify anomalous cloud behaviors and leverage cloud metric subspace analysis to automate the diagnosis of observed failures. We implement a prototype of the ...
Contributing Partner: UNT Libraries
Bayesian Probabilistic Reasoning Applied to Mathematical Epidemiology for Predictive Spatiotemporal Analysis of Infectious Diseases

Bayesian Probabilistic Reasoning Applied to Mathematical Epidemiology for Predictive Spatiotemporal Analysis of Infectious Diseases

Date: May 2006
Creator: Abbas, Kaja Moinudeen
Description: Abstract Probabilistic reasoning under uncertainty suits well to analysis of disease dynamics. The stochastic nature of disease progression is modeled by applying the principles of Bayesian learning. Bayesian learning predicts the disease progression, including prevalence and incidence, for a geographic region and demographic composition. Public health resources, prioritized by the order of risk levels of the population, will efficiently minimize the disease spread and curtail the epidemic at the earliest. A Bayesian network representing the outbreak of influenza and pneumonia in a geographic region is ported to a newer region with different demographic composition. Upon analysis for the newer region, the corresponding prevalence of influenza and pneumonia among the different demographic subgroups is inferred for the newer region. Bayesian reasoning coupled with disease timeline is used to reverse engineer an influenza outbreak for a given geographic and demographic setting. The temporal flow of the epidemic among the different sections of the population is analyzed to identify the corresponding risk levels. In comparison to spread vaccination, prioritizing the limited vaccination resources to the higher risk groups results in relatively lower influenza prevalence. HIV incidence in Texas from 1989-2002 is analyzed using demographic based epidemic curves. Dynamic Bayesian networks are integrated with ...
Contributing Partner: UNT Libraries
Boosting for Learning From Imbalanced, Multiclass Data Sets

Boosting for Learning From Imbalanced, Multiclass Data Sets

Access: Use of this item is restricted to the UNT Community.
Date: December 2013
Creator: Abouelenien, Mohamed
Description: In many real-world applications, it is common to have uneven number of examples among multiple classes. The data imbalance, however, usually complicates the learning process, especially for the minority classes, and results in deteriorated performance. Boosting methods were proposed to handle the imbalance problem. These methods need elongated training time and require diversity among the classifiers of the ensemble to achieve improved performance. Additionally, extending the boosting method to handle multi-class data sets is not straightforward. Examples of applications that suffer from imbalanced multi-class data can be found in face recognition, where tens of classes exist, and in capsule endoscopy, which suffers massive imbalance between the classes. This dissertation introduces RegBoost, a new boosting framework to address the imbalanced, multi-class problems. This method applies a weighted stratified sampling technique and incorporates a regularization term that accommodates multi-class data sets and automatically determines the error bound of each base classifier. The regularization parameter penalizes the classifier when it misclassifies instances that were correctly classified in the previous iteration. The parameter additionally reduces the bias towards majority classes. Experiments are conducted using 12 diverse data sets with moderate to high imbalance ratios. The results demonstrate superior performance of the proposed method compared ...
Contributing Partner: UNT Libraries
Bounded Dynamic Source Routing in Mobile Ad Hoc Networks

Bounded Dynamic Source Routing in Mobile Ad Hoc Networks

Access: Use of this item is restricted to the UNT Community.
Date: August 2003
Creator: George, Glyco
Description: A mobile ad hoc network (MANET) is a collection of mobile platforms or nodes that come together to form a network capable of communicating with each other, without the help of a central controller. To avail the maximum potential of a MANET, it is of great importance to devise a routing scheme, which will optimize upon the performance of a MANET, given the high rate of random mobility of the nodes. In a MANET individual nodes perform the routing functions like route discovery, route maintenance and delivery of packets from one node to the other. Existing routing protocols flood the network with broadcasts of route discovery messages, while attempting to establish a route. This characteristic is instrumental in deteriorating the performance of a MANET, as resource overhead triggered by broadcasts is directly proportional to the size of the network. Bounded-dynamic source routing (B-DSR), is proposed to curb this multitude of superfluous broadcasts, thus enabling to reserve valuable resources like bandwidth and battery power. B-DSR establishes a bounded region in the network, only within which, transmissions of route discovery messages are processed and validated for establishing a route. All route discovery messages reaching outside of this bounded region are dropped, thus ...
Contributing Partner: UNT Libraries
Building an Intelligent Filtering System Using Idea Indexing

Building an Intelligent Filtering System Using Idea Indexing

Date: August 2003
Creator: Yang, Li
Description: The widely used vector model maintains its popularity because of its simplicity, fast speed, and the appeal of using spatial proximity for semantic proximity. However, this model faces a disadvantage that is associated with the vagueness from keywords overlapping. Efforts have been made to improve the vector model. The research on improving document representation has been focused on four areas, namely, statistical co-occurrence of related items, forming term phrases, grouping of related words, and representing the content of documents. In this thesis, we propose the idea-indexing model to improve document representation for the filtering task in IR. The idea-indexing model matches document terms with the ideas they express and indexes the document with these ideas. This indexing scheme represents the document with its semantics instead of sets of independent terms. We show in this thesis that indexing with ideas leads to better performance.
Contributing Partner: UNT Libraries
Classifying Pairwise Object Interactions: A Trajectory Analytics Approach

Classifying Pairwise Object Interactions: A Trajectory Analytics Approach

Date: May 2015
Creator: Janmohammadi, Siamak
Description: We have a huge amount of video data from extensively available surveillance cameras and increasingly growing technology to record the motion of a moving object in the form of trajectory data. With proliferation of location-enabled devices and ongoing growth in smartphone penetration as well as advancements in exploiting image processing techniques, tracking moving objects is more flawlessly achievable. In this work, we explore some domain-independent qualitative and quantitative features in raw trajectory (spatio-temporal) data in videos captured by a fixed single wide-angle view camera sensor in outdoor areas. We study the efficacy of those features in classifying four basic high level actions by employing two supervised learning algorithms and show how each of the features affect the learning algorithms’ overall accuracy as a single factor or confounded with others.
Contributing Partner: UNT Libraries
CLUE: A Cluster Evaluation Tool

CLUE: A Cluster Evaluation Tool

Date: December 2006
Creator: Parker, Brandon S.
Description: Modern high performance computing is dependent on parallel processing systems. Most current benchmarks reveal only the high level computational throughput metrics, which may be sufficient for single processor systems, but can lead to a misrepresentation of true system capability for parallel systems. A new benchmark is therefore proposed. CLUE (Cluster Evaluator) uses a cellular automata algorithm to evaluate the scalability of parallel processing machines. The benchmark also uses algorithmic variations to evaluate individual system components' impact on the overall serial fraction and efficiency. CLUE is not a replacement for other performance-centric benchmarks, but rather shows the scalability of a system and provides metrics to reveal where one can improve overall performance. CLUE is a new benchmark which demonstrates a better comparison among different parallel systems than existing benchmarks and can diagnose where a particular parallel system can be optimized.
Contributing Partner: UNT Libraries
A Comparative Analysis of Guided vs. Query-Based Intelligent Tutoring Systems (ITS) Using a Class-Entity-Relationship-Attribute (CERA) Knowledge Base

A Comparative Analysis of Guided vs. Query-Based Intelligent Tutoring Systems (ITS) Using a Class-Entity-Relationship-Attribute (CERA) Knowledge Base

Date: August 1987
Creator: Hall, Douglas Lee
Description: One of the greatest problems facing researchers in the sub field of Artificial Intelligence known as Intelligent Tutoring Systems (ITS) is the selection of a knowledge base designs that will facilitate the modification of the knowledge base. The Class-Entity-Relationship-Attribute (CERA), proposed by R. P. Brazile, holds certain promise as a more generic knowledge base design framework upon which can be built robust and efficient ITS. This study has a twofold purpose. The first is to demonstrate that a CERA knowledge base can be constructed for an ITS on a subset of the domain of Cretaceous paleontology and function as the "expert module" of the ITS. The second is to test the validity of the ideas that students guided through a lesson learn more factual knowledge, while those who explore the knowledge base that underlies the lesson through query at their own pace will be able to formulate their own integrative knowledge from the knowledge gained in their explorations and spend more time on the system. This study concludes that a CERA-based system can be constructed as an effective teaching tool. However, while an ITS - treatment provides for statistically significant gains in achievement test scores, the type of treatment seems ...
Contributing Partner: UNT Libraries
A Comparison of Agent-Oriented Software Engineering Frameworks and Methodologies

A Comparison of Agent-Oriented Software Engineering Frameworks and Methodologies

Date: December 2003
Creator: Lin, Chia-En
Description: Agent-oriented software engineering (AOSE) covers issues on developing systems with software agents. There are many techniques, mostly agent-oriented and object-oriented, ready to be chosen as building blocks to create agent-based systems. There have been several AOSE methodologies proposed intending to show engineers guidelines on how these elements are constituted in having agents achieve the overall system goals. Although these solutions are promising, most of them are designed in ad-hoc manner without truly obeying software developing life-cycle fully, as well as lacking of examinations on agent-oriented features. To address these issues, we investigated state-of-the-art techniques and AOSE methodologies. By examining them in different respects, we commented on the strength and weakness of them. Toward a formal study, a comparison framework has been set up regarding four aspects, including concepts and properties, notations and modeling techniques, process, and pragmatics. Under these criteria, we conducted the comparison in both overview and detailed level. The comparison helped us with empirical and analytical study, to inspect the issues on how an ideal agent-based system will be formed.
Contributing Partner: UNT Libraries