You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Biochemistry
 Collection: UNT Theses and Dissertations
Studies on actomyosin crossbridge flexibility using a new single molecule assay.

Studies on actomyosin crossbridge flexibility using a new single molecule assay.

Date: May 2004
Creator: Gundapaneni, Deepika
Description: Several key flexure sites exist in the muscle crossbridge including the actomyosin binding site which play important roles in the actomyosin crossbridge cycle. To distinguish between these sources of flexibility, a new single molecule assay was developed to observe the swiveling of rod about a single myosin. Myosins attached through a single crossbridge displayed mostly similar torsional characteristics compared to myosins attached through two crossbridges, which indicates that most of the torsional flexibility resides in the myosin subfragment-2, and thus the hinge between subfragment-2 and light meromyosin should contribute the most to this flexibility. The comparison of torsional characteristics in the absence and presence of ADP demonstrated a small but significant increase in twist rates for the double-headed myosins but no increase for single-headed myosins, which indicates that the ADP-induced increase in flexibility arises due to changes in the myosin head and verifies that most flexibility resides in myosin subfragment-2.
Contributing Partner: UNT Libraries
N-Acylethanolamine Metabolism During Seed Germination: Molecular Identification of a Functional N-Acylethanolamine Amidohydrolase.

N-Acylethanolamine Metabolism During Seed Germination: Molecular Identification of a Functional N-Acylethanolamine Amidohydrolase.

Date: August 2004
Creator: Shrestha, Rhidaya
Description: N-Acylethanolamines (NAEs) are endogenous lipid metabolites that occur in a variety of dry seeds, and their levels decline rapidly during the first few hours of imbibition (Chapman et al., 1999, Plant Physiol., 120:1157-1164). Biochemical studies supported the existence of an NAE amidohydrolase activity in seeds and seedlings, and efforts were directed toward identification of DNA sequences encoding this enzyme. Mammalian tissues metabolize NAEs via an amidase enzyme designated fatty acid amide hydrolase (FAAH). Based on the characteristic amidase signature sequence in mammalian FAAH, a candidate Arabidopsis cDNA was identified and isolated by reverse transcriptase-PCR. The Arabidopsis cDNA was expressed in E. coli and the recombinant protein indeed hydrolyzed a range of NAEs to free fatty acids and ethanolamine. Kinetic parameters for the recombinant protein were consistent with those properties of the rat FAAH, supporting identification of this Arabidopsis cDNA as a FAAH homologue. Two T-DNA insertional mutant lines with disruptions in the Arabidopsis NAE amidohydrolase gene (At5g64440) were identified. The homozygous mutant seedlings were more sensitive than the wild type to exogenously applied NAE 12:0. Transgenic seedlings overexpressing the NAE amidohydrolase enzyme showed noticeably greater tolerance to NAE 12:0 than wild type seedlings. These results together provide evidence in vitro ...
Contributing Partner: UNT Libraries
Use of luminescence energy transfer probes to detect genetic variants.

Use of luminescence energy transfer probes to detect genetic variants.

Date: August 2004
Creator: Vaccaro, Carlos
Description: The purpose of this research was to study the hybridization of molecular beacons under different conditions and designs. Data collected suggest that the inconsistency found in the emission intensity of several of these probes may be caused by 3 important factors: length of the probe, nucleotide sequence and, the formation of an alternative complex structure such as a dimer. Of all three factors, dimer formation is the most troublesome, since it reduces the emission of the reporter molecules. A new probe design was used to reduce dimer formation. The emission signal of the improved probe was several folds stronger than those probes with the early design. In this research, dimer formation is detected, furthermore a new probe with a different design was tested. If dimer formation can be reduced molecular beacons can be integrated into more complex hybridization systems providing an important tool in research and diagnosis of genetic disorders.
Contributing Partner: UNT Libraries
Molecular and biochemical characterization of phospholipase D in cotton (Gossypium hirsutum L) seedlings.

Molecular and biochemical characterization of phospholipase D in cotton (Gossypium hirsutum L) seedlings.

Access: Use of this item is restricted to the UNT Community.
Date: May 2005
Creator: McHugh, John
Description: N-Acylethanolamines (NAEs) are enriched in seed-derived tissues and are believed to be formed from the membrane phospholipid, N-acylphosphatidylethanolamine (NAPE) via the action of phospholipase D (PLD). In an effort to identify a functional NAPE-PLD in cotton seeds and seedlings, we have screened a cotton seedling cDNA (cotyledon mRNA from 48 h dark grown seedlings) library with a 1.2 kb tobacco partial cDNA fragment encoding the middle third of a putative PLDβ/γ (genbank accession, AF195614) isoform. Six plaques were isolated from the Uni-ZAP lambda library, excised as pBluescript SK(-) phagemids and subjected to nucleotide sequence analysis. Alignment of derived sequences with Arabidopsis PLD family members indicated that the cDNAs represent six different PLD gene products -three putative PLD β isoforms and three putative PLD δ isoforms. The PLD β isoforms, designated Ghpldβ1a, GHpldβ1b and a truncated Ghpldβ1b isoform. Both the full-length PLD β proteins contained characteristic HKxxxxD catalytic domains, a PC-binding domain, a PIP2-binding domain and a C2 domain. In addition both cotton PLD β isoforms had a N-terminal "SPQY" rich domain which appeared to be unique to these PLDs. The three PLD δ isoforms, designated Ghpldδ1a, Ghpldδ1b and Ghpldδ1b-2 encode full-length PLDδ proteins, and like the above PLDs, contained the ...
Contributing Partner: UNT Libraries
The structure and function of troponin T upon metal ion binding and the detection of nucleic acid sequence variations.

The structure and function of troponin T upon metal ion binding and the detection of nucleic acid sequence variations.

Access: Use of this item is restricted to the UNT Community.
Date: May 2005
Creator: Zhang, Zhiling
Description: Numerous troponin T (TnT) isoforms are generated by alternative RNA splicing primarily in its NH2-terminal hypervariable region, but the functions of these isoforms are not completely understood. In this dissertation work, calcium and terbium binding behavior of several forms of TnT were investigated by spectroscopic and radioactive techniques. Chicken breast muscle TnT binds calcium and terbium through its NH2-terminal Tx motif (HEEAH)n with high affinity (10-6 mM) and fast on-rate (106 - 107 M-1 s-1). Chicken leg muscle TnT and a human cardiac TnT NH2-terminal fragment, which both lack the Tx motif on their NH2-terminal regions, do not have affinities for calcium in the physiological range. Computational predictions on TnT N47 suggest that the TnT NH2-terminal region might fold into an elongated structure with at least one high affinity metal ion binding pocket comprised primarily of the Tx motif sequence and several lower affinity binding sites. In addition, calcium binding to TnT N47 might alter its conformation and flexibility. Luminescence resonance energy transfer measurements and other experimental observations are consistent with the computational predictions suggesting the computational simulated atomic model is reasonable. TnT mutations are responsible for 15% of familiar hypertrophic cardiomyopathy (FHC) cases with a phenotype of relatively mild ...
Contributing Partner: UNT Libraries
Genetic Modification of Fatty Acid Profiles in Cotton

Genetic Modification of Fatty Acid Profiles in Cotton

Access: Use of this item is restricted to the UNT Community.
Date: August 2005
Creator: Rommel, Amy A.
Description: The industrial uses of cottonseed oil are limited by its fatty acid composition. Genetic modification of cotton lipid profiles using seed-specific promoters could allow cotton growers to produce valuable new oils in the seed without adverse effects on fiber quality and yield, therefore making this crop more commercially profitable. Transgenic cotton callus harboring a diverged fatty acid desaturase gene (FADX) from Momordica charantia was characterized for production of alpha-eleostearic acid (conjugated double bonds: 18:3 D9 cis, 11 trans, 13 trans), not normally found in cotton. Gas chromatography (GC) in conjunction with mass spectrometry (MS) confirmed production of alpha-eleostearic acid in the transgenic cotton tissues. A second series of transformation experiments introduced the cotton fatty acid thioesterase B (FATB) cDNA, fused to the seed-specific oleosin promoter into cotton to promote the over-expression of FATB, to generate cotton with increased palmitate in the cottonseed. PCR amplification, as well as fatty acid analysis by gas chromatography, confirmed introduction of the FATB cDNA in transgenic tissues. Collectively, these results demonstrate the feasibility of manipulating the fatty acid composition in cotton via transgenic approaches and form the basis for continued efforts to create novel oils in cottonseed.
Contributing Partner: UNT Libraries
N-Acylethanolamine (NAE) Profiles Change During Arabidopsis Thaliana Seed Germination and Seedling Growth.

N-Acylethanolamine (NAE) Profiles Change During Arabidopsis Thaliana Seed Germination and Seedling Growth.

Date: August 2006
Creator: Wiant, William C.
Description: An understanding of the potential roles as lipid mediators of a family of bioactive metabolites called N-acylethanolamines (NAEs) depends on their accurate identification and quantification. The levels of 18C unsaturated NAEs (e.g. NAE18:2, NAE 18:3, etc.) in wild-type seeds (about 2000 ng/g fw) generally decreased by about 80% during germination and post-germinative growth. In addition, results suggest NAE-degradative fatty acid amide hydrolase (FAAH) expression does not play a major role in normal NAE metabolism as previously thought. Seedlings germinated and grown in the presence of abscisic acid (ABA), an endogenous plant hormone, exhibited growth arrest and secondary dormancy, similar to the treatment of seedlings with exogenous N­lauroylethanolamine (NAE12:0). ABA-mediated growth arrest was associated with higher levels of unsaturated NAEs. Overall, these results are consistent with the concept that NAE metabolism is activated during seed germination and suggest that the reduction in unsaturated NAE levels is under strict temporal control and may be a requirement for normal seed germination and post-germinative growth.
Contributing Partner: UNT Libraries
Function of the ENOD8 gene in nodules of Medicago truncatula.

Function of the ENOD8 gene in nodules of Medicago truncatula.

Date: December 2006
Creator: Coque, Laurent
Description: To elaborate on the function(s) of the ENOD8 gene in the nodules of M. truncatula, several different experimental approaches were used. A census of the ENOD8 genes was first completed indicating that only ENOD8.1 (nt10554-12564 of GenBank AF463407) is highly expressed in nodule tissues. A maltose binding protein-ENOD8 fusion protein was made with an E. coli recombinant system. A variety of biochemical assays were undertaken with the MBP-ENOD8 recombinant protein expressed in E. coli, which did not yield the esterase activity observed for ENOD8 protein nodule fractions purified from M. sativa, tested on general esterase substrates, α-naphthyl acetate, and p-nitrophenylacetate. Attempts were also made to express ENOD8 in a Pichia pastoris system; no ENOD8 protein could be detected from Pichia pastoris strains which were transformed with the ENOD8 expression cassette. Additionally, it was shown that the ENOD8 protein can be recombinantly synthesized by Nicotiana benthamiana in a soluble form, which could be tested for activity toward esterase substrates, bearing resemblance to nodule compounds, such as the Nod factor. Transcription localization studies using an ENOD8 promoter gusA fusion indicated that ENOD8 is expressed in the bacteroid-invaded zone of the nodule. The ENOD8 protein was also detected in that same zone by ...
Contributing Partner: UNT Libraries
Hindrance of the Myosin Power Stroke Posed by the Proximity to the Troponin Complex Identified Using a Novel LRET Fluorescent Nanocircuit

Hindrance of the Myosin Power Stroke Posed by the Proximity to the Troponin Complex Identified Using a Novel LRET Fluorescent Nanocircuit

Date: May 2007
Creator: Coffee Castro-Zena, Pilar G.
Description: A novel luminescence resonance energy transfer (LRET) nanocircuit assay involving a donor and two acceptors in tandem was developed to study the dynamic interaction of skeletal muscle contraction proteins. The donor transmits energy relayed to the acceptors distinguishing myosin subfragment-1 (S1) lever arm orientations. The last acceptor allows the detection of S1's bound near or in between troponin complexes on the thin filament. Additionally, calcium related changes between troponin T and myosin were detected. Based on this data, the troponin complex situated every 7 actin monomers, hinders adjacently bound myosins to complete their power stroke; whereas myosins bound in between troponin complexes undergo complete power strokes.
Contributing Partner: UNT Libraries
Fluorescence labeling and computational analysis of the strut of myosin's 50 kDa cleft.

Fluorescence labeling and computational analysis of the strut of myosin's 50 kDa cleft.

Date: August 2007
Creator: Gawalapu, Ravi Kumar
Description: In order to understand the structural changes in myosin S1, fluorescence polarization and computational dynamics simulations were used. Dynamics simulations on the S1 motor domain indicated that significant flexibility was present throughout the molecular model. The constrained opening versus closing of the 50 kDa cleft appeared to induce opposite directions of movement in the lever arm. A sequence called the "strut" which traverses the 50 kDa cleft and may play an important role in positioning the actomyosin binding interface during actin binding is thought to be intimately linked to distant structural changes in the myosin's nucleotide cleft and neck regions. To study the dynamics of the strut region, a method of fluorescent labeling of the strut was discovered using the dye CY3. CY3 served as a hydrophobic tag for purification by hydrophobic interaction chromatography which enabled the separation of labeled and unlabeled species of S1 including a fraction labeled specifically at the strut sequence. The high specificity of labeling was verified by proteolytic digestions, gel electrophoresis, and mass spectroscopy. Analysis of the labeled S1 by collisional quenching, fluorescence polarization, and actin-activated ATPase activity were consistent with predictions from structural models of the probe's location. Although the fluorescent intensity of the ...
Contributing Partner: UNT Libraries