This system will be undergoing maintenance Monday, January 23 from 8:00 AM to 12:00 PM CST.

  You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Biochemistry
 Collection: UNT Theses and Dissertations
FLP-mediated conditional loss of an essential gene to facilitate complementation assays

FLP-mediated conditional loss of an essential gene to facilitate complementation assays

Date: December 2007
Creator: Ganesan, Savita
Description: Commonly, when it is desirable to replace an essential gene with an allelic series of mutated genes, or genes with altered expression patterns, the complementing constructs are introduced into heterozygous plants, followed by the selection of homozygous null segregants. To overcome this laborious and time-consuming step, the newly developed two-component system utilizes a site-specific recombinase to excise a wild-type copy of the gene of interest from transformed tissues. In the first component (the first vector), a wild-type version of the gene is placed between target sequences recognized by FLP recombinase from the yeast 2 μm plasmid. This construct is transformed into a plant heterozygous for a null mutation at the endogenous locus, and progeny plants carrying the excisable complementing gene and segregating homozygous knockout at the endogenous locus are selected. The second component (the second vector) carries the experimental gene along with the FLP gene. When this construct is introduced, FLP recombinase excises the complementing gene, leaving the experimental gene as the only functional copy. The FLP gene is driven by an egg apparatus specific enhancer (EASE) to ensure excision of the complementing cDNA in the egg cell and zygote following floral-dip transformation. The utility of this system is being ...
Contributing Partner: UNT Libraries
Alternate Substrates and Isotope Effects as a Probe of the Malic Enzyme Reaction

Alternate Substrates and Isotope Effects as a Probe of the Malic Enzyme Reaction

Date: August 1988
Creator: Gavva, Sandhya Reddy
Description: Dissociation constants for alternate dirmcleotide substrates and competitive inhibitors suggest that the dinucleotide binding site of the Ascaris suum NAD-malic enzyme is hydrophobic in the vicinity of the nicotinamide ring. Changes in the divalent metal ion activator from Mg^2+ to Mn^2+ or Cd^2+ results in a decrease in the dinucleotide affinity and an increase in the affinity for malate. Primary deuterium and 13-C isotope effects obtained with the different metal ions suggest either a change in the transition state structure for the hydride transfer or decarboxylation steps or both. Deuterium isotope effects are finite whether reactants are maintained at saturating or limiting concentrations with all the metal ions and dinucleotide substrates used. With Cd^2+ as the divalent metal ion, inactivation of the enzyme occurs whether enzyme alone is present or is turning over. Upon inactivation only Cd^2+ ions are bound to the enzyme which becomes denatured. Modification of the enzyme to give an SCN-enzyme decreases the ability of Cd^2+ to cause inactivation. The modified enzyme generally exhibits increases in K_NAD and K_i_metai and decreases in V_max as the metal size increases from Mg^2+ to Mn^2+ or Cd^2+, indicative of crowding in the site. In all cases, affinity for malate greatly ...
Contributing Partner: UNT Libraries
Fluorescence labeling and computational analysis of the strut of myosin's 50 kDa cleft.

Fluorescence labeling and computational analysis of the strut of myosin's 50 kDa cleft.

Date: August 2007
Creator: Gawalapu, Ravi Kumar
Description: In order to understand the structural changes in myosin S1, fluorescence polarization and computational dynamics simulations were used. Dynamics simulations on the S1 motor domain indicated that significant flexibility was present throughout the molecular model. The constrained opening versus closing of the 50 kDa cleft appeared to induce opposite directions of movement in the lever arm. A sequence called the "strut" which traverses the 50 kDa cleft and may play an important role in positioning the actomyosin binding interface during actin binding is thought to be intimately linked to distant structural changes in the myosin's nucleotide cleft and neck regions. To study the dynamics of the strut region, a method of fluorescent labeling of the strut was discovered using the dye CY3. CY3 served as a hydrophobic tag for purification by hydrophobic interaction chromatography which enabled the separation of labeled and unlabeled species of S1 including a fraction labeled specifically at the strut sequence. The high specificity of labeling was verified by proteolytic digestions, gel electrophoresis, and mass spectroscopy. Analysis of the labeled S1 by collisional quenching, fluorescence polarization, and actin-activated ATPase activity were consistent with predictions from structural models of the probe's location. Although the fluorescent intensity of the ...
Contributing Partner: UNT Libraries
Nucleotide Inhibition of Glyoxalase II

Nucleotide Inhibition of Glyoxalase II

Date: May 1999
Creator: Gillis, Glen S
Description: The glyoxalase system mediates the conversion of methylglyoxal, a toxic ketoaldehyde, to D-lactic acid. The system is composed of two enzymes, glyoxalase I (Glo-I) and glyoxalase II (Glo-II), and exhibits an absolute requirement for a catalytic quantity of glutathione (GSH). Glo-I catalyzes the isomerization of a hemithioacetal, formed non-enzymatically from methylglyoxal and GSH, to the corresponding a -D-hydroxyacid thioester, s-D-lactoylglutathione (SLG). Glo-II catalyzes the irreversible breakdown of SLG to D-lactate and GSH. We have observed that ATP or GTP significantly inhibits the Glo-II activity of tissue homogenates from various sources. We have developed a rapid, one step chromatography procedure to purify Glo-II such that the purified enzyme remains "sensitive" to inhibition by ATP or GTP (Glo-II-s). Studies indicate that inhibition of Glo-II-s by nucleotides is restricted to ATP, GTP, ADP, and GDP, with ATP appearing most effective. Kinetics studies have shown that ATP acts as a partial non-competitive inhibitor of Glo-II-s activity, and further suggest that two kinetically distinguishable forms of the enzyme exist. The sensitivity of pure Glo-II-s to nucleotide inhibition is slowly lost on storage even at -80° C. This loss is accelerated at higher temperatures or in the presence of ATP. Kinetics studies on the resultant "insensitive" ...
Contributing Partner: UNT Libraries
Studies on actomyosin crossbridge flexibility using a new single molecule assay.

Studies on actomyosin crossbridge flexibility using a new single molecule assay.

Date: May 2004
Creator: Gundapaneni, Deepika
Description: Several key flexure sites exist in the muscle crossbridge including the actomyosin binding site which play important roles in the actomyosin crossbridge cycle. To distinguish between these sources of flexibility, a new single molecule assay was developed to observe the swiveling of rod about a single myosin. Myosins attached through a single crossbridge displayed mostly similar torsional characteristics compared to myosins attached through two crossbridges, which indicates that most of the torsional flexibility resides in the myosin subfragment-2, and thus the hinge between subfragment-2 and light meromyosin should contribute the most to this flexibility. The comparison of torsional characteristics in the absence and presence of ADP demonstrated a small but significant increase in twist rates for the double-headed myosins but no increase for single-headed myosins, which indicates that the ADP-induced increase in flexibility arises due to changes in the myosin head and verifies that most flexibility resides in myosin subfragment-2.
Contributing Partner: UNT Libraries
The Relationship of Force on Myosin Subfragment 2 Region to the Coiled-Coiled Region of the Myosin Dimer

The Relationship of Force on Myosin Subfragment 2 Region to the Coiled-Coiled Region of the Myosin Dimer

Date: December 2011
Creator: Hall, Nakiuda M.
Description: The stability of myosin subfragment 2 was analyzed using gravitational force spectroscopy. The region was found to destabilize under physiological force loads, indicating the possibility that subfragment 2 may uncoil to facilitate actin binding during muscle contraction. As a control, synthetic cofilaments were produced to discover if the observations in the single molecule assay were due to the lack of the stability provided by the thick filament. Statistically, there was no difference between the single molecule assay data and the synthetic cofilament assay data. Thus, the instability of the region is due to intrinsic properties within subfragment 2.
Contributing Partner: UNT Libraries
Plastidial carbonic anhydrase in cotton (Gossypium hirsutum L.): characterization, expression, and role in lipid biosynthesis

Plastidial carbonic anhydrase in cotton (Gossypium hirsutum L.): characterization, expression, and role in lipid biosynthesis

Date: August 2001
Creator: Hoang, Chau V.
Description: Recently, plastidial carbonic anhydrase (CA, EC 4.2.1.1) cDNA clones encoding functional CA enzymes were isolated from a nonphotosynthetic cotton tissue. The role of CA in photosynthetic tissues have been well characterized, however there is almost no information for the role of CA in nonphotosynthetic tissues. A survey of relative CA transcript abundance and enzyme activity in different cotton organs revealed that there was substantial CA expression in cotyledons of seedlings and embryos, both nonphotosynthetic tissues. To gain insight into the role(s) of CA, I examined CA expression in cotyledons of seedlings during post-germinative growth at different environmental conditions. CA expression in cotyledons of seedlings increased from 18 h to 72 h after germination in the dark. Seedlings exposed to light had about a 2-fold increase in CA activities when compared with seedlings kept in the dark, whereas relative CA transcript levels were essentially the same. Manipulation of external CO2 environments [zero, ambient (350 ppm), or high (1000 ppm)] modulated coordinately the relative transcript abundance of CA (and rbcS) in cotyledons, but did not affect enzyme activities. On the other hand, regardless of the external CO2 conditions seedlings exposed to light exhibited increase CA activity, concomitant with Rubisco activity and increased ...
Contributing Partner: UNT Libraries
Tobacco Phospholipase D β1: Molecular Cloning and Biochemical Characterization

Tobacco Phospholipase D β1: Molecular Cloning and Biochemical Characterization

Date: December 2002
Creator: Hodson, Jane E.
Description: Transgenic tobacco plants were developed containing a partial PLD clone in antisense orientation. The PLD isoform targeted by the insertion was identified. A PLD clone was isolated from a cDNA library using the partial PLD as a probe: Nt10B1 shares 92% identity with PLDβ1 from tomato but lacks the C2 domain. PCR analysis confirmed insertion of the antisense fragment into the plants: three introns distinguished the endogenous gene from the transgene. PLD activity was assayed in leaf homogenates in PLDβ/g conditions. When phosphatidylcholine was utilized as a substrate, no significant difference in transphosphatidylation activity was observed. However, there was a reduction in NAPE hydrolysis in extracts of two transgenic plants. In one of these, a reduction in elicitor- induced PAL expression was also observed.
Contributing Partner: UNT Libraries
Development of Enabling Technologies to Visualize the Plant Lipidome

Development of Enabling Technologies to Visualize the Plant Lipidome

Date: August 2013
Creator: Horn, Patrick J.
Description: Improvements in mass spectrometry (MS)-based strategies for characterizing the plant lipidome through quantitative and qualitative approaches such as shotgun lipidomics have substantially enhanced our understanding of the structural diversity and functional complexity of plant lipids. However, most of these approaches require chemical extractions that result in the loss of the original spatial context and cellular compartmentation for these compounds. To address this current limitation, several technologies were developed to visualize lipids in situ with detailed chemical information. A subcellular visualization approach, direct organelle MS, was developed for directly sampling and analyzing the triacylglycerol contents within purified lipid droplets (LDs) at the level of a single LD. Sampling of single LDs demonstrated seed lipid droplet-to-droplet variability in triacylglycerol (TAG) composition suggesting that there may be substantial variation in the intracellular packaging process for neutral lipids in plant tissues. A cellular and tissue visualization approach, MS imaging, was implemented and enhanced for visualizing the lipid distributions in oilseeds. In mature cotton seed embryos distributions of storage lipids (TAGs) and their phosphatidylcholine (PCs) precursors were distribution heterogeneous between the cotyledons and embryonic axis raising new questions about extent and regulation of oilseed heterogeneity. Extension of this methodology provides an avenue for understanding metabolism ...
Contributing Partner: UNT Libraries
Evidence for Multiple Functions of a Medicago Truncatula Transporter

Evidence for Multiple Functions of a Medicago Truncatula Transporter

Access: Use of this item is restricted to the UNT Community.
Date: December 2014
Creator: Huang, Ying-Sheng
Description: Legumes play an important role in agriculture as major food sources for humans and as feed for animals. Bioavailable nitrogen is a limiting nutrient for crop growth. Legumes are important because they can form a symbiotic relationship with soil bacteria called rhizobia that results in nitrogen-fixing root nodules. In this symbiosis, rhizobia provide nitrogen to the legumes and the legumes provide carbon sources to the rhizobia. The Medicago truncatula NPF1.7/NIP/LATD gene is essential for root nodule development and also for proper development of root architecture. Work in our lab on the MtNPF1.7/MtNIP/LATD gene has established that it encodes a nitrate transporter and strongly suggests it has another function. Mtnip-1/latd mutants have pleiotropic defects, which are only partially explained by defects in nitrate transport. MtNPF1.7/NIP/LATD is a member of the large and diverse NPF/NRT1(PTR) transporter family. NPF/NRT1(PTR) members have been shown to transport other compounds in addition to nitrate: nitrite, amino acids, di- and tri-peptides, dicarboxylates, auxin, abscisic acid and glucosinolates. In Arabidopsis thaliana, the AtNPF6.3/NRT1.1( CHL1) transporter was shown to transport auxin as well as nitrate. Atchl1 mutants have defects in root architecture, which may be explained by defects in auxin transport and/or nitrate sensing. Considering the pleiotropic phenotypes observed ...
Contributing Partner: UNT Libraries
Palmitoyl-acyl Carrier Protein Thioesterase in Cotton (Gossypium hirsutum L.): Biochemical and Molecular Characterization of a Major Mechanism for the Regulation of Palmitic Acid Content

Palmitoyl-acyl Carrier Protein Thioesterase in Cotton (Gossypium hirsutum L.): Biochemical and Molecular Characterization of a Major Mechanism for the Regulation of Palmitic Acid Content

Date: August 2001
Creator: Huynh, Tu T
Description: The relatively high level of palmitic acid (22 mol%) in cottonseeds may be due in part to the activity of a palmitoyl-acyl carrier protein (ACP) thioesterase (PATE). In embryo extracts, PATE activity was highest at the maximum rate of reserve accumulation (oil and protein). The cotton FatB mRNA transcript abundance also peaked during this developmental stage, paralleling the profiles of PATE enzyme activity and seed oil accumulation. A cotton FatB cDNA clone was isolated by screening a cDNA library with a heterologous Arabidopsis FatB probe (Pirtle et al., 1999, Plant and Cell Physiology 40: 155-163). The predicted amino acid sequence of the cotton PATE preprotein had 63% identity to the Arabidopsis FatB thioesterase sequence, suggesting that the cotton cDNA clone probably encoded a FatB-type thioesterase. When acyl-CoA synthetase-minus E. coli mutants expressed the cotton cDNA, an increase in 16:0 free fatty acid content was measured in the culture medium. In addition, acyl-ACP thioesterase activity assays in E. coli lysates revealed that there was a preference for palmitoyl-ACP over oleoyl-ACP in vitro, indicating that the cotton putative FatB cDNA encoded a functional thioesterase with a preference for saturated acyl-ACPs over unsaturated acyl-ACPs (FatA). Overexpression of the FatB cDNA in transgenic cotton ...
Contributing Partner: UNT Libraries
The Nucleotide Sequences of a Mammalian Tyrosine Transfer RNA and a Cluster of Human Transfer RNA Genes

The Nucleotide Sequences of a Mammalian Tyrosine Transfer RNA and a Cluster of Human Transfer RNA Genes

Date: August 1986
Creator: Johnson, Gary D. (Gary Dean), 1960-
Description: Tyrosine tRNA was isolated from bovine liver and its nucleotide sequence was determined using in vitro 32p_ labeling techniques. Several important structural features of the tRNA are: the presence of gal-Q in the first position of the anticodon, acp3U at position 20, and a pair of adjacent N,N-dimethylguanosines (residues 26 and 27). A human DNA fragment harbored in a lambda phage clone was isolated, and restriction enzyme analysis revealed the presence of three tRNA genes in a 6.0-kb BamHI subfragment. Portions of the 6.0-kb DNA fragment containing the tRNA genes were sequenced by the method of Maxam and Gilbert and analyzed for transcriptional activity in vitro using homologous cytoplasmic extracts. A threonine tRNAUGU gene exhibited high transcriptional activity dependent on its 5'- flanking sequence. The enhanced transcription is not completely inhibited by alpha-amanitin. The value of studying tRNA structure in concert with the cognate tRNA. genes is discussed.
Contributing Partner: UNT Libraries
Manipulations of Sucrose/proton Symporters and Proton-pumping Pyrophosphatase Lead to Enhanced Phloem Transport But Have Contrasting Effects on Plant Biomass

Manipulations of Sucrose/proton Symporters and Proton-pumping Pyrophosphatase Lead to Enhanced Phloem Transport But Have Contrasting Effects on Plant Biomass

Access: Use of this item is restricted to the UNT Community.
Date: May 2015
Creator: Khadilkar, Aswad S
Description: Delivery of photoassimilate, mainly sucrose (Suc) from photoautotrophic source leaves provides the substrate for the growth and maintenance of sink tissues such as roots, storage tissues, flowers and fruits, juvenile organs, and seeds. Phloem loading is the energized process of accumulating solute in the sieve element/companion cell complex of source leaf phloem to generate the hydrostatic pressure that drives long-distance transport. In many plants this is catalyzed by Suc/Proton (H+) symporters (SUTs) which are energized by the proton motive force (PMF). Overexpression of SUTs was tested as means to enhance phloem transport and plant productivity. Phloem specific overexpression of AtSUC2 in wild type (WT) tobacco resulted in enhanced Suc loading and transport, but against the hypothesis, plants were stunted and accumulated carbohydrates in the leaves, possibly due to lack of sufficient energy to support enhanced phloem transport. The energy for SUT mediated phloem loading is provided from the PMF, which is ultimately supplied by the oxidation of a small proportion of the loaded photoassimilates. It was previously shown that inorganic pyrophosphate (PPi) is necessary for this oxidation and overexpressing a proton-pumping pyrophosphatase (AVP1) enhanced both shoot and root growth, and augmented several energized processes like nutrient acquisition and stress responses. ...
Contributing Partner: UNT Libraries
Functional Characterization of Plant Fatty Acid Amide Hydrolases

Functional Characterization of Plant Fatty Acid Amide Hydrolases

Date: December 2010
Creator: Kim, Sang-Chul
Description: Fatty acid amide hydrolase (FAAH) terminates the endocannabinoid signaling pathway that regulates numerous neurobehavioral processes in animals by hydrolyzing a class of lipid mediators, N-acylethanolamines (NAEs). Recent identification of an Arabidopsis FAAH homologue (AtFAAH) and several studies, especially those using AtFAAH overexpressing and knock-out lines suggest that a FAAH-mediated pathway exists in plants for the metabolism of endogenous NAEs. Here, I provide evidence to support this concept by identifying candidate FAAH cDNA sequences in diverse plant species. NAE amidohydrolase assays confirmed that several of the proteins encoded by these cDNAs indeed catalyzed the hydrolysis of NAEs in vitro. Kinetic parameters, inhibition properties, and substrate specificities of the plant FAAH enzymes were very similar to those of mammalian FAAH. Five amino acid residues determined to be important for catalysis by rat FAAH were absolutely conserved within the plant FAAH sequences. Site-directed mutation of each of the five putative catalytic residues in AtFAAH abolished its hydrolytic activity when expressed in Escherichia coli. Contrary to overexpression of native AtFAAH in Arabidopsis that results in enhanced seedling growth, and in seedlings that were insensitive to exogenous NAE, overexpression of the inactive AtFAAH mutants showed no growth enhancement and no NAE tolerance. However, both active ...
Contributing Partner: UNT Libraries
Mechanism of the Adenosine 3',5'-Monophosphate Dependent Protein Kinase

Mechanism of the Adenosine 3',5'-Monophosphate Dependent Protein Kinase

Date: May 1988
Creator: Kong, Cheng-Te
Description: Isotope partitioning experiments were carried out with the adenosine 3',5'-monophosphate-dependent protein kinase catalytic subunit (cAPK) from bovine hearts to obtain information on the order of addition of reactants and the relative rates of reactant release from enzyme compared to the catalytic step(s). A value of 100% trapping for both ErMgATP-[γ-32P] and E:3H-Serpeptide at low Mgf indicates that MgATP and Serpeptide dissociate slowly from the enzyme compared to the catalytic step(s). The K_Serpeptide for MgATP trapping is 17 μM, while the K_MgATP for Serpeptide trapping is 0.58 mM. The latter data indicate that the off-rate for MgATP from the E:MgATP complex is 14 s^-1 while that for Serpeptide from the E: Serpeptide complex is 64 s^-1. At high Mg^, 100% trapping is obtained for the E:MgATP-[γ-32P] complex but only 40% is obtained for the E:Serpeptide complex. Thus, the off-rate for Serpeptide from the E:MgATP:Serpeptide complex becomes significant at high Mg_f. Data suggest a random mechanism in which MgATP is sticky. The V for the cAPK reaction increases 1.5-1.7 fold in the presence of the R_II in the presence of saturating cAMP at a stoichiometry of R:C of 1:1. No change is obtained with the type-I complex under these conditions. At higher ...
Contributing Partner: UNT Libraries
NAD+-Dependent 15-Hydroxyprostaglandin Dehydrogenase from Swine Kidney: Characterization and Kinetic Mechanism

NAD+-Dependent 15-Hydroxyprostaglandin Dehydrogenase from Swine Kidney: Characterization and Kinetic Mechanism

Date: December 1979
Creator: Kung-Chao, Diana T.-Y.
Description: Cytoplasmic 15-hydroxyprostaglandin dehydrogenase from swine kidney was purified to specific activity of 1.2 U per mg protein, by chromatographic techniques. Native molecular weight of enzyme was estimated at 45,000. Enzyme was inhibited by sulfhydryls, diuretics, and various fatty acids. Substrate studies indicated NAD+ specificity and ability to catabolize prostaglandins, except prostaglandin B and thromboxane B. Initial velocity studies gave intersecting plots conforming to a sequential mechanism. 15-keto-prostaglandin exhibited linear noncompetitive production inhibition with respect to either prostaglandin or NAD+; NAD yielded linear competitive production inhibition with respect to NADH. Results, and those of dead-end inhibition and alternated substrate studies, are consistent with an ordered Bi-Bi mechanism: NAD+ is added first, then prostaglandin; then 15-keto-rostaglandin is released, then NADH.
Contributing Partner: UNT Libraries
Fumarate Activation and Kinetic Solvent Isotope Effects as Probes of the NAD-Malic Enzyme Reaction

Fumarate Activation and Kinetic Solvent Isotope Effects as Probes of the NAD-Malic Enzyme Reaction

Date: December 1992
Creator: Lai, Chung-Jeng
Description: The kinetic mechanism of activation of the NAD-malic enzyme by fumarate and the transition state structure for the oxidation malate for the NAD-malic enzyme reaction have been studied. Fumarate exerts its activating effect by decreasing the off-rate for malate from the E:Mg:malate and E:Mg:NAD:malate complexes. The activation by fumarate results in a decrease in K_imalate and an increase in V/K_malate by about 2-fold, while the maximum velocity remains constant. A discrimination exists between active and activator sites for the binding of dicarboxylic acids. Activation by fumarate is proposed to have physiologic importance in the parasite. The hydride transfer transition state for the NAD-malic enzyme reaction is concerted with respect to solvent isotope sensitive and hydride transfer steps. Two protons are involved in the solvent isotope sensitive step, one with a normal fractionation factor, another with an inverse fractionation factor. A structure for the transition state for hydride transfer in the NAD-malic enzyme reaction is proposed.
Contributing Partner: UNT Libraries
Purification and Studies of Methylglyoxal Reductase from Sheep Liver

Purification and Studies of Methylglyoxal Reductase from Sheep Liver

Date: May 1983
Creator: Lambert, Patricia A.
Description: The objectives of these investigations were (1) the purification of MG reductase from sheep liver and (2) studies of some of its characteristics. MG reductase was purified 40 fold and showed a single band on SDS-PAGE. Molecular weight estimations with SDS-PAGE showed a molecular weight of 44,000; although gel filtration with Sephadex G-150 gave a molecular weight of 87,000 indicating that the enzyme might be a dimer. The Km for MG is 1.42 mM and for NADH it is 0.04 mM. The pH optimum for the purified enzyme is pH 7.0. Isoelectric focusing experiments showed a pI of 9.3. In vivo experiments involving rats treated with 3,3',5-triiodothyronine (T_3) and 6-n-propyl-2-thiouracil (PTU) indicated that MG reductase was depressed by T_3 and elevated by PTU.
Contributing Partner: UNT Libraries
Structural Analyses of a Human Valine Transfer RNA Gene and of a Transfer RNA Pseudogene Cluster

Structural Analyses of a Human Valine Transfer RNA Gene and of a Transfer RNA Pseudogene Cluster

Date: December 1987
Creator: Lee, Mike Ming-Jen
Description: Two different cloned human DNA segments encompassing transfer RNA gene and pseudogene clusters have been isolated from a human gene library harbored in bacteriophage lambda Charon 4-A. One clone (designated as λhVal7) encompassing a 20.5-kilobase (Kb) human DNA insert was found to contain a valine transfer RNA_AAC gene and several Alu-like elements by Southern blot hybridization analysis and DNA sequencing with the dideoxyribonucleotide chain-termination method in the bacteriophage M13mp19 vector. Another lambda clone (designated as λhLeu8) encompassing a 14.3-Kb segment of human DNA was found to contain a methionine elongator transfer RNA_CAT pseudogene and other as yet unidentified transfer RNA pseudogenes.
Contributing Partner: UNT Libraries
Studies of the Mechanism of Plasma Cholesterol Esterification in Aged Rats

Studies of the Mechanism of Plasma Cholesterol Esterification in Aged Rats

Date: December 1989
Creator: Lee, Sun Min
Description: The study was performed to determine factors influencing the esteriflcation of plasma cholesterol in young and aged rats. The distribution of LCAT activity was determined following gel nitration chromatography and ultracentrifugation of whole plasma respectively. When rat plasma was fractionated on a Bio-Gel A-5 Mcolumn, LCAT activity was found to be associated with the HDL fraction. A similar result was observed upon 24 hr density gradient ultracentrifugation of the plasma. However, following prolonged 40 hr preparative ultracentrifugation, the majority of the LCAT activity was displaced into the lipoprotein-free infranatant fraction (d> 1.225 g/ml). The dissociation of LCAT from the HDL fraction occured to a smaller extent in aged rat plasma than in young rat plasma. Plasma incubation (37°C) experiments followed by the isolation of lipoproteins and the subsequent analysis of their cholesterol content revealed that in vitro net esteriflcation of free cholesterol (FC) by LCAT as well as the fractional ufilization of HDL-FC as substrate were lower in the plasma of the aged animal as compared to that of the young animal despite the fact that the total pool of FC was higher in the former. The net transfer of FC from lower density lipoproteins (d<1.07 g/ml) to HDL provided ...
Contributing Partner: UNT Libraries
Identification of Endogenous Substrates for ADP-Ribosylation in Rat Liver

Identification of Endogenous Substrates for ADP-Ribosylation in Rat Liver

Date: May 1992
Creator: Loflin, Paul T. (Paul Tracey)
Description: Bacterial toxins have been shown to modify animal cell proteins in vivo with ADPR. Animal cells also contain endogenous enzymes that can modify proteins. Indirect evidence for the existence in vivo of rat liver proteins modified by ADPR on arginine residues has been reported previously. Presented here is direct evidence for the existence of ADP-ribosylarginine in rat liver proteins. Proteins were subjected to exhaustive protease digestion and ADP-ribosyl amino acids were isolated by boronate chromatography.
Contributing Partner: UNT Libraries
Identification and Characterization of a Calcium/Phospholipid-Dependent Protein Kinase in P1798 Lymphosarcomas

Identification and Characterization of a Calcium/Phospholipid-Dependent Protein Kinase in P1798 Lymphosarcomas

Date: May 1984
Creator: Magnino, Peggy E. (Peggy Elizabeth)
Description: Calcium/phospholipid-dependent protein kinase (PKC) was partially purified from P1798 lymphosarcoma. Phospholipid-dependence was specific for phosphatidylserine. PKC phosphorylated Histone 1, with an apparent K_m of 14.1 μM. Chlorpromazine, a lipid-binding drug, inhibited PKC activity by 100%. Further studies were undertaken to establish analytical conditions which could be applied to the study of PKC in intact cells. The conditions included (1) determining optimum cell concentration for measuring PKC activity, (2) recovering PKC into the soluble fraction of cell extracts, (3) evaluating calcium and phospholipid requirements of PKC in this fraction, and (4) inhibiting PKC in this fraction. Final studies involved treatment of intact cells with potential activators. Both phytohaemagglutinin and a phorbol ester increased PKC activation.
Contributing Partner: UNT Libraries
In Vitro Modulation of Rat Liver Glyoxalase II Activity

In Vitro Modulation of Rat Liver Glyoxalase II Activity

Date: August 1988
Creator: Mbamalu, Godwin E.
Description: Glyoxylase II (Glo II, E.C. 3.1.2.6) catalyzes the hydrolysis of S-D-Lactoylglutathione (SLG) to D-Lactate and glutathione. This is the rate limiting step in the conversion of methylglyoxal to D-Lactate. The purpose of the present study was to determine whether or not a relationship exists between some naturally occuring metabolites and in vivo modulation of Glo II. We have observed a non-competitive inhibition (~ 45%) of Glo II in crude preparation of rat liver by GTP (0.3 mM). A factor (apparently protein),devoid of Glo II,when reconstituted with the purified Glo II, enhanced Glo II activity. This coordinate activation and inhibition of Glo II suggest a mechanism whereby SLG levels can be modulated in vivo.
Contributing Partner: UNT Libraries
Cottonseed Microsomal N-Acylphosphatidylethanolamine Synthase: Identification, Purification and Biochemical Characterization of a Unique Acyltransferase

Cottonseed Microsomal N-Acylphosphatidylethanolamine Synthase: Identification, Purification and Biochemical Characterization of a Unique Acyltransferase

Date: December 1998
Creator: McAndrew, Rosemary S. (Rosemary Smith)
Description: N-Acylphosphatidylethanoiamine (NAPE) is synthesized in the microsomes of cotton seedlings by a mechanism that is possibly unique to plants, the ATP-, Ca2+-, and CoA-independent acylation ofphosphatidylethanolamine (PE) with unesterified free fatty acids (FFAs), catalyzed by NAPE synthase. A photoreactive free fatty acid analogue, 12-[(4- azidosalicyl)amino]dodecanoic acid (ASD), and its 125I-labeled derivative acted as substrates for the NAPE synthase enzyme.
Contributing Partner: UNT Libraries